Current Understanding on the Unique Relaxation Dynamics of Sub-nanometer Materials and Their Structure-Property Relationships

Binghui Xue , Yuyan Lai , Junsheng Yang , Jiafu Yin , Panchao Yin

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (4) : 557 -567.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (4) : 557 -567. DOI: 10.1007/s40242-023-3090-5
Review

Current Understanding on the Unique Relaxation Dynamics of Sub-nanometer Materials and Their Structure-Property Relationships

Author information +
History +
PDF

Abstract

Sub-nanometer materials(SNMs) define the emergent functional material system with their characteristic dimensions at sub-1 nm scale and they can be generally constructed with the sub-1 nm molecular clusters as the basic structural units. Due to their extremely small sizes, the sub-nm scale particles possess diffusive dynamics in their bulk with an energy level close to typical thermal fluctuation. Meanwhile, the volume fraction of surface structures becomes dominant and the dynamics of surface structures can be distinguishable from their diffusive dynamics. The research on the dynamics of SNM is key to the understanding of their unique properties in comparison to small molecule and nano-material systems. This review paper summarizes recent progresses in the studies of relaxation dynamics of SNM upon the combinatory application of X-ray/neutron scattering, dielectric spectroscopy and rheometric technology. The functional materials inspired by the dynamics investigations with applications in mechanical strengthening, ion conduction, and gas separation are also reviewed. In the end, challenges and outlooks on the theories, characterizations and the prediction of possible new functionalities of SNMs are discussed.

Keywords

Sub-nanometer material / Dynamics / Structure-property relationship / Molecular cluster

Cite this article

Download citation ▾
Binghui Xue, Yuyan Lai, Junsheng Yang, Jiafu Yin, Panchao Yin. Current Understanding on the Unique Relaxation Dynamics of Sub-nanometer Materials and Their Structure-Property Relationships. Chemical Research in Chinese Universities, 2023, 39(4): 557-567 DOI:10.1007/s40242-023-3090-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zheng Z, Zhou Q, Li M, Yin P. Chem. Sci., 2019, 10(31): 7333.

[2]

Zhang W S S, Wang X. Science, 2022, 377: 100.

[3]

Tsuboi M, Hibino M, Mizuno N, Uchida S. J. Solid State Chem., 201, 234(3): 9.

[4]

Wu H, Li L, Tsuboi M, Cheng Y, Wang W, Mamontov E, Uchida S, Wang Z, Yin P. J. Phys. Chem. Lett., 2018, 9(19): 5772.

[5]

Ni B, Zhang Q, Ouyang C, Zhang S, Yu B, Zhuang J, Gu L, Wang X. CCS Chem., 2020, 2(1): 642.

[6]

Liu H, Gong Q, Yue Y, Guo L, Wang X. J. Am. Chem. Soc., 2017, 139(25): 8579.

[7]

Liu G, Feng X, Lang K, Zhang R, Guo D, Yang S, Cheng S Z D. Macromolecules, 2017, 50(17): 6637.

[8]

Cai L H, Panyukov S, Rubinstein M. Macromolecules, 2011, 44(19): 7853.

[9]

Poling-Skutvik R, Krishnamoorti R, Conrad J C. ACS Macro Lett., 2015, 4(10): 1169.

[10]

Cheng S, Xie S J, Carrillo J Y, Carroll B, Martin H, Cao P F, Dadmun M D, Sumpter B G, Novikov V N, Schweizer K S, Sokolov A P. ACS Nano, 2017, 11(1): 752.

[11]

Jalarvo N, Gourdon O, Ehlers G, Tyagi M, Kumar S K, Dobbs K D, Smalley R J, Guise W E, Ramirez-Cuesta A, Wildgruber C, Crawford M K. J. Phys. Chem. C, 2014, 118(10): 5579.

[12]

Carroll B, Bocharova V, Carrillo J-M Y, Kisliuk A, Cheng S, Yamamoto U, Schweizer K S, Sumpter B G, Sokolov A P. Macromolecules, 2018, 51(6): 2268.

[13]

Lungova M, Krutyeva M, Pyckhout-Hintzen W, Wischnewski A, Monkenbusch M, Allgaier J, Ohl M, Sharp M, Richter D. Phys. Rev. Lett., 201, 117(14): 147803.

[14]

Zhou H, Ye Q, Xu J. Mater. Chem. Front., 2017, 1(2): 212.

[15]

Li H, Pang S, Wu S, Feng X, Mullen K, Bubeck C. J. Am. Chem. Soc., 2011, 133(24): 9423.

[16]

Buchecker T, Schmid P, Grillo I, Prevost S, Drechsler M, Diat O, Pfitzner A, Bauduin P. J. Am. Chem. Soc., 2019, 141(17): 6890.

[17]

Xue B, Lai Y, Liu Y, Li M, Li X, Yin P. J. Colloid Interface Sci., 2023, 641: 853.

[18]

Yin J F, Xiao H, Xu P, Yang J, Fan Z, Ke Y, Ouyang X, Liu G X, Sun T L, Tang L, Cheng S Z D, Yin P. Angew. Chem. Int. Ed., 2021, 60(41): 22212.

[19]

Zhou X, Yang J, Yang J, Yin P. J. Phys. Chem. Lett., 2022, 13(30): 7009.

[20]

Zhang S, Lu Q, Yu B, Cheng X, Zhuang J, Wang X. Adv. Funct. Mater., 2021, 31(20): 2100703.

[21]

Zhang S, Liu N, Wang H, Lu Q, Shi W, Wang X. Adv. Mater., 2021, 33(23): e2100576.

[22]

Hu S, Liu H, Wang P, Wang X. J. Am. Chem. Soc., 2013, 135(30): 11115.

[23]

Meirzadeh E, Evans A M, Rezaee M, Milich M, Dionne C J, Darlington T P, Bao S T, Bartholomew A K, Handa T, Rizzo D J, Wiscons R A, Reza M, Zangiabadi A, Fardian-Melamed N, Crowther A C, Schuck P J, Basov D N, Zhu X, Giri A, Hopkins P E, Kim P, Steigerwald M L, Yang J, Nuckolls C, Roy X. Nature, 2023, 613(7942): 71.

[24]

Fu H, Yang D, Qiu D, Yan C H, Cai R, Du Y, Tan W. J. Phys. Chem. Lett., 2022, 13(7): 1855.

[25]

Fu H, Xu Y, Qiu D, Ma T, Yue G, Zeng Z, Song L, Wang S, Zhang S, Du Y, Yan C H. Angew. Chem., Int. Ed., 2022, 61(45): e202212251.

[26]

Ma L, Xu Z, Chen Y, Zhang M, Yin J, Li M, Chen K, Yin P. ACS Appl. Mater. Interfaces, 2020, 12(34): 38655.

[27]

Chen J, Dong Z, Li M, Li X, Chen K, Yin P. Adv. Funct. Mater., 2022, 32(33): 2111892.

[28]

Lindner P, Zemb T. Neutrons, X-Rays and Light Scattering Methods Applied to Soft Condensed Matter, 2002, North Holland: Elsevier

[29]

Leheny R L. Curr. Opin. Colloid Interface Sci., 2012, 17(1): 3.

[30]

Shpyrko O G. J. Synchrotron Radiat., 2014, 21: 1057 Pt 5

[31]

Berne B J, Pecora R. Dynamic Light Scattering: with Applications to Chemistry, Biology, and Physics, 1976, New York: John Wiley

[32]

Schätzel K. J. Mod. Opt., 1991, 38(9): 1849.

[33]

Block I D, Scheffold F. Rev. Sci. Instrum., 2010, 81(12): 123107.

[34]

Pine D J, Weitz D A, Zhu J X, Herbolzheimer E. J. Phys., 1990, 51(18): 2101.

[35]

Kremer F, Schönhals A. Broadband Dielectric Spectroscopy, 2003, Berlin, Heidelberg: Springer-Verlag

[36]

Cai L, Lai Y, Yin P. ChemPhysChem, 2021, 22(1): 9.

[37]

Schawe J E K. Thermochim. Acta, 1995, 260: 1.

[38]

Rubinstein M, Colby R H. Polymer Physics, Vol.23, 2003, New York: Oxford University Press

[39]

Koumakis N, Pamvouxoglou A, Poulos A S, Petekidis G. Soft Matter, 2012, 8(15): 4271.

[40]

Mason T G, Weitz D A. Phys. Rev. Lett., 1995, 75(14): 2770.

[41]

Shikata T, Pearson D S. J. Rheol., 1994, 38(3): 601.

[42]

Liu Y, Yan X Y, Guo Q Y, Lei H, Liu X Y, Li X H, Wu Y, Zhang W, Liu G, Cheng S Z D. Macromol. Chem. Phys., 2022, 224(3): 2200357.

[43]

Zhao B, Xu S, Adeel M, Zheng S. Polymer, 2019, 160: 82.

[44]

Yamamoto U, Carrillo J-M Y, Bocharova V, Sokolov A P, Sumpter B G, Schweizer K S. Macromolecules, 2018, 51(6): 2258.

[45]

Zhou X, Yang J, Yin J-F, Liu F W, Huang J, Li M, Liu Y, Cai L, Sun T L, Yin P. Chem. Sci., 2022, 13(39): 11633.

[46]

Zhang X, Wei W, Xiong H. Macromolecules, 2022, 55(9): 3637.

[47]

Liu Y, Liu G, Zhang W, Du C, Wesdemiotis C, Cheng S Z D. Macromolecules, 2019, 52(11): 4341.

[48]

Zou Q, Zhu Y, Ruan Y, Zhang R, Liu G. Giant, 2021, 8: 100070.

[49]

Yin J F, Zheng Z, Yang J, Liu Y, Cai L, Guo Q Y, Li M, Li X, Sun T L, Liu G X, Huang C, Cheng S Z D, Russell T P, Yin P. Angew. Chem. Int. Ed., 2021, 60(9): 4894.

[50]

Alexandris S, Franczyk A, Papamokos G, Marciniec B, Matyjaszewski K, Koynov K, Mezger M, Floudas G. Macromolecules, 2015, 48(10): 3376.

[51]

Alexandris S, Franczyk A, Papamokos G, Marciniec B, Graf R, Matyjaszewski K, Koynov K, Floudas G. Macromolecules, 2017, 50(10): 4043.

[52]

Yin P, Li D, Liu T. Isr. J. Chem., 2011, 51(2): 191.

[53]

Li X, Zhou Q, Ma L, Chen K, Yin P. J. Colloid Interface Sci., 2021, 594: 874.

[54]

Rong S, Wang X. Chem. Commun., 2022, 58(82): 11475.

[55]

Chai S, Xu F, Zhang R, Wang X, Zhai L, Li X, Qian H J, Wu L, Li H. J. Am. Chem. Soc., 2021, 143(50): 21433.

[56]

Guo H, Li L, Xu X, Zeng M, Chai S, Wu L, Li H. Angew. Chem. Int. Ed., 2022, 61(44): e202210695.

[57]

Liu L, Cai L, Xiao H, Lai Y, Liu Y, Zhou X, Yin J, Yang J, Chen K, Yin P. Nano Lett., 2023, 23(7): 2669.

[58]

Xu Z, Chen K, Li M, Hu C, Yin P. Chem. Commun., 2020, 56(39): 5287.

[59]

Chen K, Liu S, Zhu W, Yin P. Small, 2022, 18(40): e2203957.

[60]

Zheng Z, Li M, Lai Y, Cao Y, Yin P. Macromol. Rapid Commun., 2023, 44(1): e2200227.

[61]

Wang Z, Daemen L L, Cheng Y, Mamontov E, Bonnesen P V, Hong K, Ramirez-Cuesta A J, Yin P. Chem.-Eur. J., 201, 22(40): 14131.

[62]

Ke X, Turner S, Quintana M, Hadad C, Montellano-Lopez A, Carraro M, Sartorel A, Bonchio M, Prato M, Bittencourt C, van Tendeloo G. Small, 2013, 9(23): 3922.

[63]

Liu J, Shi W, Wang X. J. Am. Chem. Soc., 2019, 141(47): 18754.

[64]

Chai S, Cao X, Xu F, Zhai L, Qian H J, Chen Q, Wu L, Li H. ACS Nano, 2019, 13(6): 7135.

[65]

LaMer V K, Dinegar R H. J. Am. Chem. Soc., 1950, 72(11): 4847.

[66]

Liu J, Shi W, Ni B, Yang Y, Li S, Zhuang J, Wang X. Nat. Chem., 2019, 11(9): 839.

[67]

Gülseren O, Ercolessi F, Tosatti E. Phys. Rev. Lett., 1998, 80(17): 3775.

[68]

Ivanenko A A, Tambasov I A, Pshenichnaia A A, Shestakov N P. Opt. Mater., 2017, 73: 388.

[69]

Hu J, Cai L, Wang H, Chen K, Yin P. ACS Appl. Nano Mater., 2021, 4(4): 3597.

[70]

Zheng Z, Li M, Zhou Q, Cai L, Yin J-F, Cao Y, Yin P. ACS Appl. Nano Mater., 2021, 4(1): 811.

[71]

Tranchemontagne D J, Ni Z, O’Keeffe M, Yaghi O M. Angew. Chem., Int. Ed., 2008, 47(28): 5136.

[72]

Prakash M. J., Lah M. S., Chem. Commun., 2009, (23), 3326

[73]

Li J R, Zhou H C. Nat. Chem., 2010, 2(10): 893.

[74]

Lee S, Jeong H, Nam D, Lah M S, Choe W. Chem. Soc. Rev., 2021, 50(1): 528.

[75]

Kieffer M, Garcia A M, Haynes C J E, Kralj S, Iglesias D, Nitschke J R, Marchesan S. Angew. Chem. Int. Ed., 2019, 58(24): 7982.

[76]

Zhang M, He S, Zou Q, Li Z A, Lai Y, Chen K, Ma L, Yin J F, Li M, He C, Ke Y, Yin P. J. Phys. Chem. Lett., 2021, 12(22): 5395.

[77]

Liu Y, Cai L, Ma L, Li M, Yang J, Chen K, Yin P. Nano Lett., 2021, 21(21): 9021.

[78]

Lai Y, Yang J, Cai L, Zhang M, He X, Yu H, Li M, Ning G H, Yin P. Adv. Funct. Mater., 2023, 33(12): 2210122.

[79]

Oldenhuis N J, Qin K P, Wang S, Ye H Z, Alt E A, Willard A P, Van Voorhis T, Craig S L, Johnson J A. Angew. Chem. Int. Ed., 2020, 59(7): 2784.

[80]

Kawano R, Horike N, Hijikata Y, Kondo M, Carné-Sánchez A, Larpent P, Ikemura S, Osaki T, Kamiya K, Kitagawa S, Takeuchi S, Furukawa S. Chem, 2017, 2(3): 393.

[81]

Zhang M, Lai Y, Li M, Hong T, Wang W, Yu H, Li L, Zhou Q, Ke Y, Zhan X, Zhu T, Huang C, Yin P. Angew. Chem. Int. Ed., 2019, 58(48): 17412.

[82]

Zheng W, Wang W, Jiang S T, Yang G, Li Z, Wang X Q, Yin G Q, Zhang Y, Tan H, Li X, Ding H, Chen G, Yang H B. J. Am. Chem. Soc., 2019, 141(1): 583.

[83]

He S, Zhang M, Xue B, Lai Y, Li M, Yin P. J. Phys. Chem. B, 2021, 125(48): 13229.

[84]

Lund R, Willner L, Stellbrink J, Lindner P, Richter D. Phys. Rev. Lett., 200, 96(6): 068302.

[85]

Zhang M, Yu H, Zou Q, Li Z-A, Lai Y, Cai L, Yin P. CCS Chem., 2022, 4(11): 3563.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/