CV-etched Nanostructured Ag Foils for Efficient Electrochemical CO2 Reduction

Yuanxin Mao , Shi Chen , Zihan Jia , Xufeng Dong , Qing Mao

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 1031 -1036.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 1031 -1036. DOI: 10.1007/s40242-023-3088-z
Article

CV-etched Nanostructured Ag Foils for Efficient Electrochemical CO2 Reduction

Author information +
History +
PDF

Abstract

Electrochemical reduction of CO2 has attracted wide attention because it can realize an artificial carbon cycle. The key step to achieving efficient electrochemical conversion of CO2 is the preparation of catalysts with multiple active sites, prepared without additional strong alkaline solutions. In this work, the surfaces of Ag foils were nanosized by simple cyclic voltammetry(CV) pretreatment, which can supply an abundant specific surface area for the CO2 reduction reaction(CO2RR). The results indicated that the CO2RR performance of Ag catalysts was boosted, and the competitive reaction of H2 evolution was suppressed. For this catalyst, at −0.92 V vs. RHE(reversible hydrogen electrode), the current density of CO achieved 12.31 mA/cm2, a significant increase compared to that of the untreated Ag foils(0.81 mA/cm2). The outstanding electrochemical properties are ascribed to the rich nanostructures on Ag foils after the CV pretreatment. The nanostructure has a very high specific surface area, so it can supply more reactive active sites in the process of CO2RR.

Keywords

Electrochemical CO2 reduction / Ag foil catalyst / Cyclic voltammetry / Nanostructure / High activity

Cite this article

Download citation ▾
Yuanxin Mao, Shi Chen, Zihan Jia, Xufeng Dong, Qing Mao. CV-etched Nanostructured Ag Foils for Efficient Electrochemical CO2 Reduction. Chemical Research in Chinese Universities, 2023, 39(6): 1031-1036 DOI:10.1007/s40242-023-3088-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jacoby M. Chem. Eng. News, 2013, 91(26): 21.

[2]

Chen Y H, Kanan M W. J. Am. Chem. Soc., 2012, 134(4): 1986.

[3]

Kornienko N, Zhao Y B, Kiley C S, Zhu C H, Kim D, Lin S, Chang C J, Yaghi O M, Yang P D. J. Am. Chem. Soc., 2015, 137(44): 14129.

[4]

Kuhl K P, Hatsukade T, Cave E R, Abram D N, Kibsgaard J, Jaramillo T F. J. Am. Chem. Soc., 2014, 136(40): 14107.

[5]

Du Y, Zheng X, Xue Y, Li Y. Chem. Res. Chinese Universities, 2022, 38(6): 1380.

[6]

Gong Y, Pan J, Zhang L, Wang X, Song S, Zhang H. Chem. Res. Chinese Universities, 2022, 38(5): 1287.

[7]

Zhang Y Q, Jacobs G, Sparks D E, Dry M E, Davis B H. Catal. Today, 2002, 71(3): 411.

[8]

Hoshi N, Kato M, Hori Y. J. Electroanal. Chem., 1997, 440(1): 283.

[9]

Tornow C E, Thorson M R, Ma S, Gewirth A A, Kenis P J A. J. Am. Chem. Soc., 2012, 134(48): 19520.

[10]

Wang F Q, Zhang W L, Wan H B, Li C X, An W K, Sheng X, Liang X Y, Wang X P, Ren Y L, Zheng X, Lv D C, Qin Y C. Chinese Chem. Lett., 2022, 33(5): 2259.

[11]

Lu Q, Rosen J, Zhou Y, Hutchings G S, Kimmel Y C, Chen J G G, Jiao F. Nat. Commun., 2014, 5: 3242.

[12]

Liu S B, Tao H B, Zeng L, Liu Q, Xu Z G, Liu Q X, Luo J L. J. Am. Chem. Soc., 2017, 139(6): 2160.

[13]

Ma M, Trzesniewski B J, Xie J, Smith W A. Angew. Chem. Int. Ed., 201, 55(33): 9748.

[14]

Gao X Y, Wang S Y, Li J, Zheng Y X, Zhang R J, Zhou P, Yang Y M, Chen L Y. Thin Solid Films, 2004, 455: 438.

[15]

Lu P L, Yang Y J, Yao J N, Wang M, Dipazir S, Yuan M L, Zhang J X, Wang X, Xie Z J, Zhang G J. Appl. Catal. B: Environ., 2019, 241: 113.

[16]

Zhang L, Zhao Z J, Gong J L. Angew. Chem. Int. Ed., 2017, 56(38): 11326.

[17]

Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I B, Norskov J K, Jaramillo T F. Science, 2017, 355(6321): eaad4998.

[18]

Mistry H, Varela A S, Kuhl S, Strasser P, Roldan Cuenya B. Nat. Rev. Mater., 201, 1(4): 16009.

[19]

Mistry H, Reske R, Zeng Z H, Zhao Z J, Greeley J, Strasser P, Roldan Cuenya B. J. Am. Chem. Soc., 2014, 136(47): 16473.

[20]

Chen Y H, Li C W, Kanan M W. J. Am. Chem. Soc., 2012, 134(49): 19969.

[21]

Clark E L, Resasco J, Landers A, Lin J, Chung L T, Walton A, Hahn C, Jaramillo T F, Bell A T. ACS Catal., 2018, 8(7): 6560.

[22]

Li C W, Ciston J, Kanan M W. Nature, 2014, 508(7497): 504.

[23]

Roberts F S, Kuhl K P, Nilsson A. Angew. Chem. Int. Ed., 2015, 54: 5179.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/