Understanding the Conformational Interconversions of a Polymer Chain in a Liquid Environment at the Single-molecule Level

Yue Shao , Junhao Wei , Yu Bao , Wanhao Cai , Lu Qian , Shuxun Cui

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (5) : 840 -844.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (5) : 840 -844. DOI: 10.1007/s40242-023-3087-0
Article

Understanding the Conformational Interconversions of a Polymer Chain in a Liquid Environment at the Single-molecule Level

Author information +
History +
PDF

Abstract

The conformational interconversions of polymer chains have been of great interest as a basic scientific issue. Single-molecule force spectroscopy(SMFS) is a powerful tool for molecular manipulation, which enables experimental studies on the single-chain behaviors of polymers. The SMFS results show that an individual polymer chain in a liquid environment may have similar properties to an ideal chain, which contradicts the traditional theoretical view. Herein, by taking into account the collisions of solvent molecules, the conformational interconversions of a single polymer chain in a liquid environment have been analyzed. The conformational interconversion frequency of a carbon-carbon bond of an alkane chain can be estimated by establishing the relationship between the internal rotation barriers of small molecules (monomers) and the corresponding macromolecules. Since the time scale of conformational interconversions of the polymer backbone is much shorter than that of SMFS experiments, most polymers with C-C backbones behave as ideal chains in liquid environments.

Keywords

C-C bond / Internal rotation barrier / Conformational interconversion

Cite this article

Download citation ▾
Yue Shao, Junhao Wei, Yu Bao, Wanhao Cai, Lu Qian, Shuxun Cui. Understanding the Conformational Interconversions of a Polymer Chain in a Liquid Environment at the Single-molecule Level. Chemical Research in Chinese Universities, 2023, 39(5): 840-844 DOI:10.1007/s40242-023-3087-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

James H M, Guth E. J. Chem. Phys., 1943, 11(10): 455.

[2]

Wu D, Du P, Kang J. Chem. J. Chinese Universities, 199, 17(8): 1319.

[3]

Flory P J, Rehner J. J. Chem. Phys., 1943, 11(11): 512.

[4]

Eyring H. Phys. Rev., 1932, 39: 746.

[5]

Kuhn W, Grün F. Kolloid-Z, 1942, 101: 248.

[6]

Flory P J. Phys. Today, 1970, 23(5): 71.

[7]

Huggins M L. J. Am. Chem. Soc., 1954, 76(10): 2854.

[8]

Moy V T, Florin E L, Gaub H E. Science, 1994, 266(5183): 257.

[9]

Li I T S, Walker G C. Acc. Chem. Res., 2012, 45(11): 2011.

[10]

Kozhuharov S, Radiom M, Maroni P, Borkovec M. Macromolecules, 2018, 51(10): 3632.

[11]

Fu L, Wang H, Li H. CCS Chem., 2019, 1(1): 138.

[12]

Lei H, Zhang J, Li Y, Wang X, Qin M, Wang W, Cao Y. ACS Nano, 2022, 16(9): 15440.

[13]

Zhang X, Hong B, Wei P, Pei P, Xu H, Chen L, Tong Y, Chen J, Luo S, Fan H, He C. Emerg. Microbes Infect, 2022, 11(1): 2658.

[14]

Song Y, Ma Z, Zhang W. Macromolecules, 2022, 55(11): 417.

[15]

Shi S, Wang Z, Deng Y, Tian F, Wu Q, Zheng P. CCS Chem., 2022, 4(2): 598.

[16]

Cai W, Xiao C, Qian L, Cui S. Nano Res., 2019, 12(1): 57.

[17]

Bolinger J C, Traub M C, Brazard J, Adach T, Barbara P F, Vanden Bout D A. Acc. Chem. Res., 2012, 45(11): 1992.

[18]

Wang R, Wang Z. Macromolecules, 2014, 47(12): 4094.

[19]

Tan X, Yu Y, Liu K, Xu H, Liu D, Wang Z, Zhang X. Langmuir, 2012, 28(25): 9601.

[20]

Bao Y, Huang X, Xu D, Xu J, Jiang L, Lu Z, Cui S. Polymer, 2022, 253: 124996.

[21]

Zhang W, Zhang X. Prog. Polym. Sci., 2003, 28(8): 1271.

[22]

Bao Y, Luo Z, Cui S. Chem. Soc. Rev., 2020, 49(9): 2799.

[23]

Chen J, Peng Q, Peng X, Zhang H, Zeng H. Chem. Rev., 2022, 122(18): 14594.

[24]

Thorsten H, Matthias R, Markus S, Hermann E, Gaub R. Phys. Rev. Lett., 2005, 94(4): 48301.

[25]

Wang K, Pang X, Cui S. Langmuir, 2013, 29(13): 4315.

[26]

Luo Z, Zhang A, Chen Y, Shen Z, Cui S. Macromolecules, 201, 49(9): 3559.

[27]

Bao Y, Cui S. Langmuir, 2023, 39(10): 3527.

[28]

Klushin L I, Skvortsov A M, Leermakers F A M. Phys. Rev. E, 2004, 69(6): 061101.

[29]

Mezzasalma S A. J. Colloid Interface Sci., 200, 299(2): 589.

[30]

Shikhovtseva E S. Phys. A, 2005, 349(3/4): 421.

[31]

Luo Z, Zhang B, Qian H, Lu Z, Cui S. Nanoscale, 201, 8(41): 17820.

[32]

Sader J E, Chon J W M, Mulvaney P. Rev. Sci. Instrum., 1999, 70(10): 3967.

[33]

Bao Y, Huang X, Xu J, Cui S. Macromolecules, 2021, 54(15): 7314.

[34]

Klyne W, Prelog V. Experientia, 1960, 16(12): 521.

[35]

Wilson E B. Proc. Natl. Acad. Sci. USA, 1957, 43(9): 816.

[36]

Buckingham R A. P. Roy. Soc. A: Math Phy., 1938, 168(933): 264.

[37]

Kemp J D, Pitzer K S. J. Chem. Phys., 193, 4(11): 749.

[38]

Tang A C. Acta Polym. Sin., 1962, 18: 143.

[39]

Peng J B, He P S. Conformation Statistics of Polymer Chains, 2006, Hefei: The University of Science and Technology of China Press

[40]

Zheng J, Kwak K, Xie J, Fayer M D. Science, 200, 313(5795): 1951.

[41]

Tizniti M L P, Sébastien D, Lique F, Berteloite C, Canosa A, Alexander, Millard H, Sims Ian R. Nat. Chem., 2014, 6(2): 141.

[42]

Hause M L, Prince B D, Bemish R J. J. Chem. Phys., 2015, 142(7): 074301.

[43]

Wallach Daniel. J. Chem. Phys., 1967, 47(12): 5258.

[44]

Min B, Lee J W. J. Mol. Liq., 1999, 80(1): 33.

[45]

Helfand E. J. Chem. Phys., 1982, 77(11): 5714.

[46]

Dais P, Spyros A. Nucl. Magn. Reson. Spectrosc., 1995, 27(5/6): 555.

[47]

Oesterhelt F, Rief M, Gaub H E. New J. Phys., 1999, 1(1): 6.1.

[48]

Cui S, Yu J, Kuehner F, Schulten K, Gaub H E. J. Am. Chem. Soc., 2007, 129(47): 14710.

[49]

Lu S, Cai W, Zhang S, Cui S. Macromolecules, 2023, 56(8): 3204.

AI Summary AI Mindmap
PDF

179

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/