Tuning Photodetection Band of MAPbX3(X=Cl/Br/I) Perovskite Single Crystals by Sub-nano Carbon Dot Doping

Xia Zhu , Jiakun An , Gaoyu Chen , Chenyu Xing , Jianchun Bao , Xiangxing Xu

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (4) : 654 -659.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (4) : 654 -659. DOI: 10.1007/s40242-023-3086-1
Article

Tuning Photodetection Band of MAPbX3(X=Cl/Br/I) Perovskite Single Crystals by Sub-nano Carbon Dot Doping

Author information +
History +
PDF

Abstract

Perovskite single crystals are prominent semiconductor materials due to their high carrier mobility, long carrier diffusion length, and large absorption coefficient. They can be used as optoelectronic functional materials for narrowband or broadband photodetectors. In this report, the photodetection band tunability was achieved by doping MAPbX3(MA=methylammonium, X=Cl/Br/I) perovskite single crystals with sub-nano carbon dots (MAPbX3-C). The sub-nano size and good dispersibility of the carbon dots ensured controllable doping. The absorption of the sub-nano carbon dots and trap states in the MAPbX3-C single crystals resulted in the special responsivity spectrum features.

Keywords

Sub-nano / Carbon dot / Perovskite / Single crystal / Photodetector

Cite this article

Download citation ▾
Xia Zhu, Jiakun An, Gaoyu Chen, Chenyu Xing, Jianchun Bao, Xiangxing Xu. Tuning Photodetection Band of MAPbX3(X=Cl/Br/I) Perovskite Single Crystals by Sub-nano Carbon Dot Doping. Chemical Research in Chinese Universities, 2023, 39(4): 654-659 DOI:10.1007/s40242-023-3086-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc., 2009, 131: 6050.

[2]

Fang Y J, Dong Q F, Shao Y C, Yuan Y B, Huang J S. Nature Photonics, 2015, 9: 679.

[3]

Liu Y C, Yang Z, Cui D, Ren X D, Sun J K, Liu X J, Zhang J R, Wei Q B, Fan H B, Yu F Y, Zhang X, Zhao C M, Liu S F. Adv. Mater., 2015, 27: 5176.

[4]

Wenger B, Nayak P K, Wen X, Kesava S V, Noel N K, Snaith H J. Nat. Commun., 2017, 8: 590.

[5]

Wang X, Li Y W, Xu Y B, Pan Y Z, Zhu C Y, Zhu D J, Wu Y, Li G W, Zhang Q, Li Q, Zhang X B, Wu J, Chen J, Lei W. Chemistry of Materials, 2020, 32: 4973.

[6]

Huang Q Y, Li Z, Chen X Y, Xia Y K, Zheng Z W, Mei A Y, Zhu K, Hu Y, Wang T, Rong Y G, Han H W. Chemical Communications, 2021, 57: 6125.

[7]

Cho N, Li F, Turedi B, Sinatra L, Sarmah S P, Parida M R, Saidaminov M I, Murali B, Burlakov V M, Goriely A, Mohammed O F, Wu T, Bakr O M. Nat. Commun., 201, 7: 13407.

[8]

Yao F, Peng J L, Li R M, Li W J, Gui P B, Li B R, Liu C, Tao C, Lin Q Q, Fang G J. Nat. Commun., 2020, 11: 1194.

[9]

Shi D, Adinolfi V, Comin R, Yuan M J, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H, Bakr O M. Science, 2015, 347: 519.

[10]

Bouhjar F, Derbali L, Mari B. Nano Res., 2020, 13: 2546.

[11]

Cha M Y, Da P M, Wang J, Wang W Y, Chen Z H, Xiu F X, Zheng G F, Wang Z S. J. Am. Chem. Soc., 201, 138: 8581.

[12]

Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I. Nature, 2015, 517: 476.

[13]

Niu G D, Li W Z, Li J W, Wang L D. Sci. China Mater., 201, 59: 728.

[14]

Shi T. Y., Liu W. J., Zhu J. T., Fan X. S., Zhang Z. Y., He X. C., He R., Wang J. H., Chen K. Z., Ge Y. S., Sun X. M., Liu Y. L., Chu P. K., Yu X.-F., Nano Res., 2023, https://doi.org/10.1007/s12274-023-5487-3

[15]

Wei W, Zhang Y, Xu Q, Wei H T, Fang Y J, Wang Q, Deng Y H, Li T, Gruverman A, Cao L, Huang J S. Nat. Photonics, 2017, 11: 315.

[16]

Huang Y M, Qiao L, Jiang Y Z, He T W, Long R, Yang F, Wang L, Lei X J, Yuan M J, Chen J. Angew. Chem. Int. Ed., 2019, 58: 17834.

[17]

Li J H, Xu L M, Wang T, Song J Z, Xue J, Dong Y H, Cai B, Li X M, Zeng H B. Adv. Mater., 2017, 29: 1603885.

[18]

Song J Z, Li J H, Li X M, Xu L M, Dong Y H, Zeng H B. Adv. Mater., 2015, 27: 7162.

[19]

Zeng H B, Duan G T, Li Y, Yang S K, Xu X X, Cai W P. Adv. Funct. Mater., 2010, 20: 561.

[20]

Shi Z F, Zhang F, Yan J J, Zhang Y, Chen X, Chen S, Wu D, Li X J, Zhang Y, Shan C X. Nano Res., 2022, 15: 492.

[21]

Mao W X, Zheng J L, Zhang Y P, Chesman A S R, Ou Q D, Hicks J, Li F, Wang Z Y, Graystone B, Bell T D M, Rothmann M U, Duffy N W, Spiccia L, Cheng Y B, Bao Q L, Bach U. Angew. Chem. Int. Ed., 2017, 56: 12486.

[22]

Shahjahan M D, Okamoto T, Chouhan L, Sachith B M, Pradhan N, Misawa H, Biju V. Angew. Chem. Int. Ed., 2023, 62: e202215947.

[23]

Wang S H, Gu Z K, Zhao R D, Zhang T, Lou Y J, Guo L T, Su M, Li L H, Zhang Y Q, Song Y L. Nano Res., 2022, 15: 6568.

[24]

Bao C X, Chen Z L, Fang Y J, Wei H T, Deng Y H, Xiao X, Li L L, Huang J S. Adv. Mater., 2017, 29: 1703209.

[25]

Wang S L, Yang F, Zhu J R, Cao Q X, Zhong Y G, Wang A C, Du W N, Liu X F. Sci. China Mater., 2020, 63: 1438.

[26]

Liu Y C, Sun J K, Yang Z, Yang D, Ren X D, Xu H, Yang Z P, Liu S Z. Adv. Opt. Mater., 201, 4: 1829.

[27]

Liu Y C, Ren X D, Zhang J, Yang Z, Yang D, Yu F Y, Sun J K, Zhao C M, Yao Z, Wang B, Wei Q B, Xiao F W, Fan H B, Deng H, Deng L P, Liu S Z. Sci. China Chem., 2017, 60: 1367.

[28]

Ning Z J, Gong X W, Comin R, Walters G, Fan F J, Voznyy O, Yassitepe E, Buin A, Hoogland S, Sargent E H. Nature, 2015, 523: 324.

[29]

Gaulding E A, Chen X H, Yang Y, Harvey S P, To B, Kim Y-H, Beard M C, Sercel P C, Luther J M. ACS Mater. Lett., 2020, 2: 1464.

[30]

Qiao K K, Deng H, Yang X K, Dong D D, Li M, Hu L, Liu H, Song H S, Tang J. Nanoscale, 201, 8: 7137.

[31]

Hong Z, Huang K F, Xu C S, Ouyang Z Y, Xue M S, Cheng B C. Chem. Eng. J., 2021, 422: 130136.

[32]

Ngo T T, Mora-Sero I. J. Phys. Chem. Lett., 2019, 10: 1099.

[33]

Liu S L, Yan S K, Zhu Z Y, Zhao Z W, Elemike E E, Onwudiwe D C, Bae B S, Bin Shafie S, Lei W, Li Q. J. Soc. Inf. Display., 2022, 30: 531.

[34]

Han J, Luo S, Yin X, Zhou Y, Nan H, Li J, Li X, Oron D, Shen H, Lin H. Small, 2018, 14: 1801016.

[35]

Xu X. X., Yu L. W., Eds.: Zhou Y., Wang Y., Perovskite Quantum Dots: Synthesis, Properties and Applications, Springer Singapore, Singapore, 2020, 181

[36]

Li J C, Chen Y F, Zhang B, Li J, Uddin Z, Jiang X N, Wang X Y, Hong J W, Yuan Y B, Stathatos E, Xiao H N, Pan A L, Liu Y, Yang B. Adv. Opt. Mater., 2022, 10: 2102225.

[37]

Zhou J, Luo J J, Rong X M, Wei P J, Molokeev M S, Huang Y, Zhao J, Liu Q L, Zhang X W, Tang J, Xia Z G. Adv. Opt. Mater., 2019, 7: 1900139.

[38]

He Q Q, Chen G Y, Wang Y K, Liu X Y, Xu D T, Xu X X, Liu Y, Bao J C, Wang X. Small, 2021, 17: 2101403.

[39]

An J K, Chen G Y, Zhu X, Lv X, Bao J C, Xu X X. ACS Appl. Electron. Mater., 2022, 4: 1525.

[40]

Thi Tuyen N, Suarez I, Sanchez R S, Martinez-Pastor JP, Mora-Sero I. Nanoscale, 201, 8: 14379.

[41]

Sytnykt M, Yakunin S, Schoefberger W, Lechner R T, Burian M, Ludescher L, Killilea N A, YousefiAmin A, Kriegner D, Stangl J, Groiss H, Heiss W. ACS Nano, 2017, 11: 1246.

[42]

Dirin D N, Dreyfuss S, Bodnarchuk M I, Nedelcu G, Papagiorgis P, Itskos G, Kovalenko M V. J. Am. Chem. Soc., 2014, 136: 6550.

[43]

Fletcher N H. J. Chem. Phys., 1958, 29: 572.

[44]

Cheng X H, Jing L, Yuan Y, Du S J, Zhang J, Zhan X Y, Ding J X, Yu H, Shi G D. J. Phys. Chem. C, 2019, 123: 1669.

[45]

Maculan G, Sheikh A D, Abdelhady A L, Saidaminov M I, Hague M A, Murali B, Alarousu E, Mohammed O F, Wu T, Bakr O M. J. Phys. Chem. Lett., 2015, 6: 3781.

[46]

Liang F X, Liang L, Zhao X Y, Luo L B, Liu Y H, Tong X W, Zhang Z X, Huang JCA. Adv. Opt. Mater., 2019, 7: 1801392.

[47]

Zhang X, Liu C C, Ren G, Li S Y, Bi C H, Hao Q Y, Liu H. Nanomaterials, 2018, 8: 318.

[48]

Saidaminov M I, Haque M A, Savoie M, Abdelhady A L, Cho N, Dursun I, Buttner U, Alarousu E, Wu T, Bakr O M. Adv. Mater., 201, 28: 8144.

[49]

Le Corre V M, Duijnstee E A, El Tambouli O, Ball J M, Snaith H J, Lim J, Koster L J A. ACS Energy Lett., 2021, 6: 1087.

[50]

Duijnstee E A, Ball J M, Le Corre V M, Koster L J A, Snaith H J, Lim J. ACS Energy Lett., 2020, 5: 376.

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/