Mechanistic Insights into the Catalytic Condensation of Methyl Ketones on MgO Surfaces

Mingxia Zhou , Larry A. Curtiss , Rajeev S. Assary

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 1010 -1016.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 1010 -1016. DOI: 10.1007/s40242-023-3074-5
Article

Mechanistic Insights into the Catalytic Condensation of Methyl Ketones on MgO Surfaces

Author information +
History +
PDF

Abstract

Ketone coupling via aldol condensation is one of the promising routes to produce cyclic and value-added precursors for renewable hydrocarbon biofuels. A first-principles-based microkinetic modeling is performed to evaluate the surface-mediated reaction mechanisms and the role of water molecules in the observed activities for 2-pentanone and 3-pentanone aldol condensation on dehydroxylated MgO(111) surface and hydroxylated terminated surface[OH-MgO(111)]. We have identified the enhancement of the surface OH group to MgO(111) surface catalytic activity by destabilizing the binding strength of reaction intermediates and reducing the energy barriers of rate-determining steps(proton transfer and dehydration steps). The 2-pentanone has one elementary step less in the complete reaction mechanism of aldol condensation and preferable energy barrier for proton transfer and dehydration steps, revealing 2-pentanone as terminal ketone is more reactive than 3-pentanone as central ketone. The water molecules dominated the OH-MgO(111) surface after further addition of water, leading to the reduction of turnover frequency of the aldol condensation dimer product as the loss of aldol condensation reaction intermediates in competitive adsorption with water molecules.

Keywords

Aldol condensation / Reaction mechanism / Magnesium oxide / Water effect / Density functional theory

Cite this article

Download citation ▾
Mingxia Zhou, Larry A. Curtiss, Rajeev S. Assary. Mechanistic Insights into the Catalytic Condensation of Methyl Ketones on MgO Surfaces. Chemical Research in Chinese Universities, 2023, 39(6): 1010-1016 DOI:10.1007/s40242-023-3074-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huber G W, Iborra S, Corma A. Chem. Rev., 200, 106(9): 4044.

[2]

Gallezot P. Chem. Soc. Rev., 2012, 41(4): 1538.

[3]

Kundu K, Chatterjee A, Bhattacharyya T, Roy M, Kaur A. Prospects of Alternative Transportation Fuels, 2018, Singapore: Springer 235.

[4]

Meng Q, Hou M, Liu H, Song J, Han B. Nat. Commun., 2017, 8(1): 14190.

[5]

Alonso D M, Bond J Q, Dumesic J A. Green Chem., 2010, 12(9): 1493.

[6]

Mestres R. Green Chem., 2004, 6(12): 583.

[7]

Mäki-Arvela P, Shcherban N, Lozachmeur C, Eränen K, Aho A, Smeds A, Kumar N, Peltonen J, Peurla M, Russo V, Volcho K P, Murzin D Y. Catal. Lett., 2019, 149(5): 1383.

[8]

Ji W, Chen Y, Kung H H. Appl. Catal. A: Gen., 1997, 161(1): 93.

[9]

Huo X., Conklin D. R., Zhou M., Vorotnikov V., Assary R. S., Purdy S. C., Page K., Li Z., Unocic K. A., Balderas R. I., Richards R. M., Vardon D. R., Appl. Catal. B, 2021, 120234

[10]

Kikhtyanin O, Kelbichová V, Vitvarová D, Kubů M, Kubička D. Catal Today, 2014, 227: 154.

[11]

Lewis J D, Van de Vyver S, Román-Leshkov Y. Angew. Chem. Int. Ed., 2015, 54(34): 9835.

[12]

Subramanian M, Vanangamudi G, Thirunarayanan G. Spectrochim Acta A: Mol. Biomol. Spectrosc., 2013, 110: 116.

[13]

Rodrigues E G, Keller T C, Mitchell S, Pérez-Ramírez J. Green Chem., 2014, 16(12): 4870.

[14]

Liang G, Wang A, Zhao X, Lei N, Zhang T. Green Chem., 201, 18(11): 3430.

[15]

Young Z D, Hanspal S, Davis R J. ACS Catal., 201, 6(5): 3193.

[16]

Luo S, Falconer J L. J. Catal., 1999, 185(2): 393.

[17]

Geng Z, Hideshi H, Kozo T. Bull. Chem. Soc. Jpn., 1989, 626: 2070.

[18]

Vrbková E, Kovářová T, Vyskočilová E, Červený L. Prog. React. Kinet., 2020, 45: 1468678319825713.

[19]

Fan D, Dong X, Yu Y, Zhang M. Phys. Chem. Chem. Phys., 2017, 19(37): 25671.

[20]

Ngo D T, Tan Q, Wang B, Resasco D E. ACS Catal., 2019, 9(4): 2831.

[21]

Diez V K, Apesteguía C R, Di Cosimo J I. J. Catal., 200, 240(2): 235.

[22]

Alminshid A H, Abbas M N, Alalwan H A, Sultan A J, Kadhom M A. Mol. Catal., 2021, 501: 111333.

[23]

Kim Y D, Stultz J, Goodman D W. J. Phys. Chem. B, 2002, 106(7): 1515.

[24]

Ciston J, Subramanian A, Marks L D. Phys. Rev. B, 2009, 79(8): 085421.

[25]

Lazarov V, Plass R, Poon H C, Saldin D, Weinert M, Chambers S, Gajdardziska-Josifovska M. Phys. Rev. B, 2005, 71(11): 115434.

[26]

Zhang W, Fan D, Yu Y. New J. Chem., 2022, 46(2): 559.

[27]

Perrin C L, Chang K-L. J. Org. Chem., 201, 81(13): 5631.

[28]

Zhang H, Ibrahim M Y S, Flaherty D W. J. Catal., 2018, 361: 290.

[29]

Baigrie L M, Cox R A, Slebocka-Tilk H, Tencer M, Tidwell T T. J. Am. Chem. Soc., 1985, 107(12): 3640.

[30]

Assary R S, Curtiss L A, Dumesic J A. ACS Catal., 2013, 3(12): 2694.

[31]

Liu C, Evans T J, Cheng L, Nimlos M R M C R D J A R S C L A. J. Phys. Chem. C, 2015, 119(42): 24025.

[32]

Chen S, Yang H, Hu C. Catal. Today, 2015, 245: 100.

[33]

Kresse G, Hafner J. Phys. Rev. B, 1994, 49(20): 14251.

[34]

Kresse G, Furthmüller J. Comput. Mater. Sci., 199, 6(1): 15.

[35]

Klimeš J, Bowler D R, Michaelides A. J. Phys.: Condens Matter, 2009, 22(2): 022201.

[36]

Methfessel M, Paxton A T. Phys. Rev. B, 1989, 40(6): 3616.

[37]

Monkhorst H J, Pack J D. Phys. Rev. B, 197, 13(12): 5188.

[38]

Pack J D, Monkhorst H J. Phys. Rev. B, 1977, 16(4): 1748.

[39]

Henkelman G, Uberuaga B P, Jónsson H. J. Chem. Phys., 2000, 113(22): 9901.

[40]

Henkelman G, Jónsson H. J. Chem. Phys., 1999, 111(15): 7010.

[41]

Medford A J, Shi C, Hoffmann M J, Lausche A C, Fitzgibbon S R, Bligaard T, Nørskov J K. Catal. Lett., 2015, 145(3): 794.

[42]

Campbell C T, Sellers J R V. J. Am. Chem. Soc., 2012, 134(43): 18109.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/