Zeolite-encaged Ultrasmall Pt-Zn Species with Trace Amount of Pt for Efficient Propane Dehydrogenation

Ziqiang Qu , Tianjun Zhang , Xichen Yin , Junyi Zhang , Xiaoyun Xiong , Qiming Sun

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 870 -876.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 870 -876. DOI: 10.1007/s40242-023-3063-8
Article

Zeolite-encaged Ultrasmall Pt-Zn Species with Trace Amount of Pt for Efficient Propane Dehydrogenation

Author information +
History +
PDF

Abstract

Propane dehydrogenation(PDH) has become a globe-welcoming technology to meet the massive demand for propylene, but the most commonly used Pt-based catalysts suffer from quick sintering, poor selectivity for propylene, and unsatisfied Pt utilization. Herein, a series of Silicalite-1(S-1) zeolite-encaged ultrasmall Pt-Zn clusters with a trace amount of Pt[40–180 ppm(parts per million)] were developed by using a one-pot ligand-protected direct H2 reduction method. Interestingly, the extremely low amount of Pt can significantly promote the activity of zeolite-encaged Zn catalysts in PDH reactions. Thanks to the high Pt dispersion, the synergy between Pt and Zn species, and the confinement effect of zeolites, the optimized PtZn@S-1 catalyst with 180 ppm Pt and 1.88%(mass fraction) Zn, exhibited an extraordinarily high propane conversion(33.9%) and propylene selectivity(99.5%) at 550 °C with a weight hourly space velocity (WHSV) of 8 h−1, affording an extremely high propylene formation rate of $340.7\,{\rm{mo}}{{\rm{l}}_{{{\rm{C}}_3}{{\rm{H}}_6}}} \cdot {g_{{\rm{Pt}}}}^{ - 1} \cdot {{\rm{h}}^{ - 1}}$. This work provides a reference for the preparation of zeolite-encaged metal catalysts with high activity and noble metal utilization in PDH reactions.

Keywords

Propane dehydrogenation / Zeolite / Confinement effect / Bimetallic catalyst / Pt-Zn

Cite this article

Download citation ▾
Ziqiang Qu, Tianjun Zhang, Xichen Yin, Junyi Zhang, Xiaoyun Xiong, Qiming Sun. Zeolite-encaged Ultrasmall Pt-Zn Species with Trace Amount of Pt for Efficient Propane Dehydrogenation. Chemical Research in Chinese Universities, 2023, 39(6): 870-876 DOI:10.1007/s40242-023-3063-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen S, Chang X, Sun G, Zhang T, Xu Y, Wang Y, Pei C, Gong J. Chem. Soc. Rev., 2021, 50: 3315.

[2]

Monai M, Gambino M, Wannakao S, Weckhuysen B M. Chem. Soc. Rev., 2021, 50: 11503.

[3]

Qu Z, Sun Q. Inorg. Chem. Front., 2022, 9: 3095.

[4]

Zhang F, Nie Y-Y, Miao C-X, Yue Y-H, Hua W-M, Gao Z. Chem. J. Chinese. Universities, 2012, 33(1): 96.

[5]

Liu L, Díaz U, Arenal R, Agostini G, Concepcion P, Corma A. Nat. Mater., 2017, 16: 132.

[6]

Xu G-H, Yu J-P, Xu H-S, Li C-C, Huang J-H, Wang P-F. J. Inorg. Mater., 2019, 34: 546.

[7]

Sun Q, Wang N, Fan Q, Zeng L, Mayoral A, Miao S, Yang R, Jiang Z, Zhou W, Zhang J, Zhang T, Xu J, Zhang P, Cheng J, Yang D-C, Jia R, Li L, Zhang Q, Wang Y, Terasaki O, Yu J. Angew. Chem. Int. Ed., 2020, 59: 19450.

[8]

Wang Y, Hu Z-P, Lv X, Chen L, Yuan Z-Y. J. Catal., 2020, 385: 61.

[9]

Xie L, Chai Y, Sun L, Dai W, Wu G, Guan N, Li L. J. Energy. Chem., 2021, 57: 92.

[10]

Liu L, Lopez-Haro M, Lopes C W, Li C, Concepcion P, Simonelli L, Calvino J J, Corma A. Nat. Mater., 2019, 18: 866.

[11]

Ryoo R, Kim J, Jo C, Han S W, Kim J-C, Park H, Han J, Shin H S, Shin J W. Nature, 2020, 585: 221.

[12]

Chai Y, Dai W, Wu G, Guan N, Li L. Acc. Chem. Res., 2021, 54: 2894.

[13]

Zhang B, Li G, Liu S, Qin Y, Song L, Wang L, Zhang X, Liu G. ACS Catal., 2022, 12: 1310.

[14]

Sun Q., Wang N., Yu J., Adv. Mater., 2021, 33, e2104442

[15]

Wang N., Sun Q., Yu J., Adv. Mater., 2019, 31, e1803966

[16]

Chai Y, Shang W, Li W, Wu G, Dai W, Guan N, Li L. Adv. Sci., 2019, 6: 1900299.

[17]

Zhang B, Li G, Zhai Z, Chen D, Tian Y, Yang R, Wang L, Zhang X, Liu G. AIChE J, 2021, 67: e17295.

[18]

Sun Q, Wang N, Zhang T, Bai R, Mayoral A, Zhang P, Zhang Q, Terasaki O, Yu J. Angew. Chem. Int. Ed., 2019, 58: 18570.

[19]

Wang W, Sun Q, Wang Q, Li S, Xu J, Deng F. Catal. Sci. Technol., 2022, 12: 4442.

[20]

Zhang Q, Gao S, Yu J. Chem. Rev., 2023, 123: 6039.

[21]

Li J, Zhang K, Wang N, Sun Q. Chem. J. Chinese. Universities, 2022, 43(5): 20220032.

[22]

Liu Y, Wang L, Xiao F-S. Chem. Res. Chinese Universities, 2022, 38(3): 671.

[23]

Deng X, Qin B, Liu R, Qin X, Dai W, Wu G, Guan N, Ma D, Li L. J. Am. Chem. Soc., 2021, 143: 20898.

[24]

Wang C, Guan E, Wang L, Chu X, Wu Z, Zhang J, Yang Z, Jiang Y, Zhang L, Meng X, Gates B C, Xiao F-S. J. Am. Chem. Soc., 2019, 141: 8482.

[25]

Yang Z, Li H, Zhou H, Wang L, Wang L, Zhu Q, Xiao J, Meng X, Chen J, Xiao F-S. J. Am. Chem. Soc., 2020, 142: 16429.

[26]

Xu H., Wu P., Natl. Sci. Rev., 2022, 9, nwac045

[27]

Wang S, Zhang L, Wang P, Jiao W, Qin Z, Dong M, Wang J, Olsbye U, Fan W. Nat. Catal., 2022, 5: 1038.

[28]

Zhu Q, Zhou H, Wang L, Wang C, Wang H, Fang W, He M, Wu Q, Xiao F-S. Nat. Catal., 2022, 5: 1030.

[29]

Jin Z, Wang L, Zuidema E, Mondal K, Zhang M, Zhang J, Wang C, Meng X, Yang H, Mesters C, Xiao F-S. Science, 2020, 367: 193.

[30]

Sun Q, Wang N, Xu Q, Yu J. Adv. Mater., 2020, 32: 2001818.

[31]

Wang N, Sun Q, Bai R, Li X, Guo G, Yu J. J. Am. Chem. Soc., 201, 138: 7484.

[32]

Wang N, Sun Q, Zhang T, Mayoral A, Li L, Zhou X, Xu J, Zhang P, Yu J. J. Am. Chem. Soc., 2021, 143: 6905.

[33]

Wei S, Dai H, Long J, Lin H, Gu J, Zong X, Yang D, Tang Y, Yang Y, Dai Y. Chem. Eng. J., 2023, 455: 140726.

[34]

Zhao D, Tian X, Doronkin D E, Han S, Kondratenko V A, Grunwaldt J-D, Perechodjuk A, Vuong T H, Rabeah J, Eckelt R, Rodemerck U, Linke D, Jiang G, Jiao H, Kondratenko E V. Nature, 2021, 599: 234.

[35]

Ren Y-J, Hua W-M, Yue Y-H, Gao Z. Chem. J. Chinese Universities, 2009, 30(6): 1162.

[36]

Chen M, Gupta G, Ordonez C W, Lamkins A R, Ward C J, Abolafia C A, Zhang B, Roling L T, Huang W. J. Am. Chem. Soc., 2021, 143: 20907.

[37]

Yu C, Ge Q, Xu H, Li W. Catal. Lett., 200, 112: 197.

AI Summary AI Mindmap
PDF

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/