A Fluorescent In (III) Metal-Organic Framework for Explosives Detection

Wen Li , Xinyao Liu , Guanghua Li , Yunling Liu

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 1005 -1009.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 1005 -1009. DOI: 10.1007/s40242-023-3058-5
Article

A Fluorescent In (III) Metal-Organic Framework for Explosives Detection

Author information +
History +
PDF

Abstract

A novel metal-organic framework {[In3(TATAT)2]·3CH3NH3·7NMF·8H2O}[JLU-MOF101, H6TATAT=5,5′,5″-(1,3,5-triazine-2,4,6-triyl) tris-(azanediyl)triisophthalate, NMF=N-methylformamide] with cor topology has been synthesized under solvothermal conditions. The framework of JLU-MOF101 is constructed by {In(COO)4} nodes and a hexacarboxylic organic ligand. JLU-MOF101 exhibits excellent fluorescence properties in N, N-dimethylformamide(DMF) solution, and its emission spectrum can be greatly overlapped with the ultraviolet absorption spectra of trinitrophenol(TNP) and 2,4-dinitrophenol(2,4-DNP). As a result, JLU-MOF101 exhibits excellent performance of fluorescence quenching for TNP and 2,4-DNP. In addition, we demonstrate the selective detection capability of JLU-MOF101 through a large number of anti-interference tests.

Keywords

Selective detection / Indium metal-organic framework / Fluorescent detection / Nitroaromatic explosive

Cite this article

Download citation ▾
Wen Li, Xinyao Liu, Guanghua Li, Yunling Liu. A Fluorescent In (III) Metal-Organic Framework for Explosives Detection. Chemical Research in Chinese Universities, 2023, 39(6): 1005-1009 DOI:10.1007/s40242-023-3058-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ju K S, Parales R E. Microbiol. Mol. Biol. Rev., 2010, 74(2): 250.

[2]

Ramos J L, Gonzalez-Perez M M, Caballero A, van Dillewijn P. Curr. Opin. Biotechnol., 2005, 16(3): 275.

[3]

Tiwari J, Tarale P, Sivanesan S, Bafana A. Environ. Sci. Pollut. Res. Int., 2019, 26(28): 28650.

[4]

Esteve-Nunez A, Caballero A, Ramos J L. Microbiol. Mol. Biol. Rev., 2001, 65(3): 335.

[5]

Chhatwal M, Mittal R, Gupta R D, Awasthi S K. J. Mater. Chem. C, 2018, 6(45): 12142.

[6]

Caygill J S, Davis F, Higson S P. Talanta, 2012, 88: 14.

[7]

Long J R, Yaghi O M. Chem. Soc. Rev., 2009, 38(5): 1213.

[8]

Zhou H C, Long J R, Yaghi O M. Chem. Rev., 2012, 112(2): 673.

[9]

Kolle J M, Fayaz M, Sayari A. Chem Rev., 2021, 121(13): 7280.

[10]

Lin J B, Nguyen T T T, Vaidhyanathan R, Burner J, Taylor J M, Durekova H, Akhtar F, Mah R K, Ghaffari-Nik O, Marx S, Fylstra N, Iremonger S S, Dawson K W, Sarkar P, Hovington P, Rajendran A, Woo T K, Shimizu G K H. Science, 2021, 374: 1464.

[11]

Li J T, Bhatt P M, Li J Y, Eddaoudi M, Liu Y L. Adv. Mater., 2020, 32(44): e2002563.

[12]

Zhou S, Shekhah O, Ramirez A, Lyu P, Abou-Hamad E, Jia J, Li J, Bhatt P M, Huang Z, Jiang H, Jin T, Maurin G, Gascon J, Eddaoudi M. Nature, 2022, 606(7915): 706.

[13]

Zhou X, Jin H, Xia B Y, Davey K, Zheng Y, Qiao S Z. Adv. Mater., 2021, 33(51): e2104341.

[14]

Yan R, Ma T, Cheng M, Tao X, Yang Z, Ran F, Li S, Yin B, Cheng C, Yang W. Adv. Mater., 2021, 33(27): e2008784.

[15]

Wang H, Chen B H, Liu D J. Adv. Mater., 2021, 33(25): e2008023.

[16]

Han D, Liu X, Wu S. Chem. Soc. Rev., 2022, 51(16): 7138.

[17]

Osterrieth J W M, Fairen-Jimenez D. Biotechnol. J., 2021, 16(2): e2000005.

[18]

Linnane E, Haddad S, Melle F, Mei Z, Fairen-Jimenez D. Chem. Soc. Rev., 2022, 51(14): 6065.

[19]

Qian Y, Zhang F, Pang H. Adv. Funct. Mater., 2021, 31(37): e2104231.

[20]

Shen Y, Pan T, Wang L, Ren Z, Zhang W, Huo F. Adv. Mater., 2021, 33(46): e2007442.

[21]

Hou S L, Dong J, Zhao B. Adv. Mater., 2020, 32(3): e1806163.

[22]

Wei Y S, Zhang M, Zou R, Xu Q. Chem. Rev., 2020, 120(21): 12089.

[23]

Fu D-Y, Liu X, Zheng X, Zhou M, Wang W, Su G, Liu T, Wang L, Xie Z. Coord. Chem. Rev., 2022, 456: 214393.

[24]

Lian H, Cheng X, Hao H, Han J, Lau M T, Li Z, Zhou Z, Dong Q, Wong W Y. Chem. Soc. Rev., 2022, 51(6): 1926.

[25]

Feng Y, Yao J. Coord. Chem. Rev., 2022, 470: 214699.

[26]

Zhang S, Wang J, Zhang Y, Ma J, Huang L, Yu S, Chen L, Song G, Qiu M, Wang X. Environ. Pollut., 2021, 291: 118076.

[27]

Moumen E, Bazzi L, Hankari S. Coord. Chem. Rev., 2022, 455: 214376.

[28]

Kaur M, Kumar S, Yusuf M, Lee J, Brown R J C, Kim K-H, Malik A K. Coord. Chem. Rev., 2021, 449: 214214.

[29]

He Y-P, Tan Y-X, Zhang J. Coord. Chem. Rev., 2020, 420: 213354.

[30]

Razavi S A A, Morsali A. Chem. Rev., 2020, 415: 213299.

[31]

Younis S A, Bhardwaj N, Bhardwaj S K, Kim K-H. Deep Coord. Chem. Rev., 2021, 429: 213620.

[32]

Li H Y, Zhao S N, Zang S Q, Li J. Chem. Soc. Rev., 2020, 49(17): 6364.

[33]

Luo T Y, Das P, White D L, Liu C, Star A, Rosi N L. J. Am. Chem. Soc., 2020, 142(6): 2897.

[34]

Li J, Yuan S, Qin J S, Huang L, Bose R, Pang J, Zhang P, Xiao Z, Tan K, Malko A V. ACS Appl. Mater. Interfaces, 2020, 12(23): 26727.

[35]

Liu X, Liu W, Kou Y, Yang X, Ju Z, Liu W. Inorg. Chem. Front., 2022, 9(16): 4065.

[36]

Dong J, Zhao D, Lu Y, Sun W Y. J. Mater. Chem. A, 2019, 7(40): 22744.

[37]

Bhattacharjee S, Bera S, Das R, Chakraborty D, Basu A, Banerjee P, Ghosh S, Bhaumik A. ACS Appl. Mater. Interfaces, 2022, 14(18): 20907.

[38]

Lei M, Ge F, Ren S, Gao X, Zheng H. Sep. Purif. Technol., 2022, 286: 12433.

[39]

Goswami R, Das S, Seal N, Pathak B, Neogi S. ACS Appl. Mater. Interfaces, 2021, 13(29): 34012.

[40]

Seal N, Singh M, Das S, Goswami R, Pathak B, Neogi S. Mater. Chem. Front., 2021, 5(2): 979.

[41]

Wang B, Liu J H, Yu J, Lv J, Dong C, Li J R. J. Hazard. Mater., 2020, 382: 121018.

[42]

Xing S, Bing Q, Qi H, Liu J, Bai T, Li G, Shi Z, Feng S, Xu R R. ACS Appl. Mater. Interfaces, 2017, 9(28): 23828.

[43]

Zeng X S, Xu H L, Xu Y C, Li X Q, Nie Z Y, Gao S Z, Xiao D R. Inorg. Chem. Front., 2018, 5(7): 1622.

[44]

Li A, Chu Q, Zhou H, Yang Z, Liu B, Zhang J. Inorg. Chem. Front., 2021, 8(9): 2341.

[45]

Sun X D, Li X, Yao S, Krishna R, Gu J M, Li G, Liu Y L. J. Mater. Chem. A, 2020, 8(33): 17106.

[46]

He H M, Song Y, Sun F X, Bian Z, Gao L, Zhu G S. J. Mater. Chem. A, 2015, 3(32): 16598.

[47]

Xin X L, Ai J, Li F G, Zhao J Q, Zhang L L. Appl. Organomet. Chem., 2020, 34(9): e5803.

[48]

Hu M L, Joharian M, Razavi S A A, Morsali A, Wu D Z, Azhdari Tehrani A, Wang J, Junk P C, Guo Z F. J. Hazard. Mater., 2021, 406: 124501.

[49]

Chakraborty D, Bej S, Sahoo S, Chongdar S, Ghosh A, Banerjee P, Bhaumik A. ACS Sustainable Chem. Eng., 2021, 9(42): 14224.

[50]

Chatz-Giachia A, Psalti A E, Pournara A D, Manos M J, Pappa C, Triantafyllidis K, Lazarides T J. Mater. Chem. C, 2022, 10(34): 12307.

[51]

Liu Y, Xie X-Y, Cheng C, Shao Z S, Wang H S. J. Mater. Chem. C, 2019, 7(35): 10743.

[52]

Wang B, Lv X L, Feng D, Xie L H, Zhang J, Li M, Xie Y, Li J R, Zhou H C. J. Am. Chem. Soc., 201, 138(19): 6204.

[53]

Qiao J Y, Liu X Y, Zhang L R, Eubank J F, Liu X, Liu Y L. J. Am. Chem. Soc., 2022, 144(37): 17054.

[54]

Chen L, Liu D, Peng J, Du Q, He H. Coord. Chem. Rev., 2020, 404: 213113.

[55]

Jia C, He T, Wang G M. Coord. Chem. Rev., 2023, 476: 214930.

[56]

Kamal S, Khalid M, Khan M S, Shahid M. Coord. Chem. Rev., 2023, 474: 214859.

[57]

Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A Jr., Peralta P E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam N J, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Ortiz J V, Cioslowski J, Fox D J. Gaussian 09, revision C.07, 2009, Wallingford, CT: Gaussian Inc.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/