Advances in Nanomaterial-microbe Coupling System for Removal of Emerging Contaminants

Chongyuan Ren , Rui Bai , Wei Chen , Junpeng Li , Xudong Zhou , Xiaochun Tian , Feng Zhao

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (3) : 389 -394.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (3) : 389 -394. DOI: 10.1007/s40242-023-3053-x
Review

Advances in Nanomaterial-microbe Coupling System for Removal of Emerging Contaminants

Author information +
History +
PDF

Abstract

Emerging contaminants are characterized by toxicity, environmental durability, and bioaccumulation. How to effectively remove them has attracted tremendous attention in the field of environmental science and engineering. Nanomaterial-microbe coupling systems driven by photo-electrochemistry have high degradation efficiency and low cost by combining the advantages of nanomaterials and microorganisms in pollutant treatment. This review summarizes the recent development of the nanomaterial-microbe system for the removal of emerging contaminants, which is divided into exogenous nanomaterial-microbe and endogenous nanomaterial-microbe. The interaction mechanism of materials and microorganisms is addressed from the particular perspective of extracellular electron transfer and redox reactions, and the advantages and challenges of the pollutants treatment are analyzed. Furthermore, future applications in the degradation of emerging contaminants in environmental fields have been prospected.

Keywords

Emerging contaminant / Nanomaterial / Microbe / Extracellular electron transfer

Cite this article

Download citation ▾
Chongyuan Ren, Rui Bai, Wei Chen, Junpeng Li, Xudong Zhou, Xiaochun Tian, Feng Zhao. Advances in Nanomaterial-microbe Coupling System for Removal of Emerging Contaminants. Chemical Research in Chinese Universities, 2023, 39(3): 389-394 DOI:10.1007/s40242-023-3053-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chaukura N, Gwenzi W, Tavengwa N, Manyuchi M M. Environ. Dev., 201, 19: 84.

[2]

Cole M, Lindeque P, Fileman E, Halsband C, Goodhead R, Moger J, Galloway T S. Environ. Sci. Technol., 2013, 47: 6646.

[3]

Sussarellu R, Suquet M, Thomas Y, Lambert C, Fabioux C, Pernet M E J, Le G N, Quillien V, Mingant C, Epelboin Y, Corporeau C, Guyomarch J, Robbens J, Paul P I, Soudant P, Huvet A. Proc. Natl. Acad. Sci. USA, 201, 113: 2430.

[4]

Yang Q L, Gao Y, Ke J, Show P L, Ge Y H, Liu Y H, Guo R X, Chen J Q. Bioengineered, 2021, 12: 7376.

[5]

Khin M M, Nair A S, Babu V J, Murugan R, Ramakrishna S. Energy Environ. Sci., 2012, 5: 8075.

[6]

Ahmed M B, Zhou J L, Ngo H H, Guo W S. Sci. Total Environ., 2015, 532: 112.

[7]

Yu F, Li Y, Han S, Ma J. Chemosphere, 201, 153: 365.

[8]

Wilkinson J, Hooda P S, Barker J, Barton S, Swinden J. Environ. Pollut., 2017, 231: 954.

[9]

Joseph L, Heo J Y, Park Y G, Flora J R V, Yoon Y. Desalination, 2011, 281: 68.

[10]

Joseph L, Zaib Q, Khan I A, Berge N D, Park Y G, Saleh N B, Yoon Y. Water Res., 2011, 45: 4056.

[11]

Wang D B, Jia F Y, Wang H, Chen F, Fang Y, Dong W B, Zeng G M, Li X M, Yang Q, Yuan X Z. J. Colloid Interface Sci., 2018, 519: 273.

[12]

Cheng G, Karthikeyan K. Environ. Sci. Technol., 2005, 39: 2660.

[13]

Tolboom S N, Carrillo N D, Rostro A M J, Quiroz R C, Barcelo D, Iqbal H M N, Parra S R. Sci. Total Environ., 2019, 665: 358.

[14]

Zhang D Q, Gersberg R M, Ng W J, Tan S K. Environ. Pollut., 2014, 184: 620.

[15]

Saravanan A, Kumar P S, Karishma S, Vo D V N, Jeevanantham S, Yaashikaa P R, George C S. Chemosphere, 2021, 264: 128580.

[16]

Xiao Y, Zhang E H, Zhang J D, Dai Y F, Yang Z H, Christensen H E M, Ulstrup J, Zhao F. Sci. Adv., 2017, 3: e1700623.

[17]

Srinivasan V, Morowitz H J. Biol. Bull., 2009, 217: 222.

[18]

Akbarzadeh R, Fung C S L, Fung C S L, Rather R A, Lo I M C. Chem. Eng. J., 2018, 341: 248.

[19]

Li Y D, Tian X C, Chen L X, Li J P, Zhao F. Bioelectrochemistry, 2022, 147: 108195.

[20]

Yu M L, Wang J J, Tang L, Feng C Y, Liu H Y, Zhang H, Peng B, Chen Z M, Xie Q Q. Water Res., 2020, 175: 115673.

[21]

Ding R, Yan W F, Wu Y, Xiao Y, Gang H Y, Wang S H, Chen L X, Zhao F. Water Res., 2018, 143: 589.

[22]

Ye J, Wang C, Gao C, Fu T, Yang C H, Ren G P, Lv J, Zhou S G, Xiong Y J. Nat. Commun., 2022, 13: 6612.

[23]

Ye J, Chen Y P, Gao C, Wang C, Hu A D, Dong G W, Chen Z, Zhou S G, Xiong Y J. Angew. Chem. Int. Edit., 2022, 61: e202213244.

[24]

Wang Q, Cai Z H, Huang L P, Pan Y Z, Quan X, Puma G L. Chem. Eng. J., 2019, 376: 119566.

[25]

Xu H D, Xiao L L, Zheng S L, Zhang Y C, Li J J, Liu F H. Sci. China: Technol. Sci., 2019, 62: 1688.

[26]

Yuan H R, Deng L F, Chen Y, Yuan Y. Electrochim. Acta, 201, 196: 280.

[27]

Huang S J, Dwivedi K A, Kumar S, Wang C T, Yadav A K. Environ. Pollut., 2023, 317: 120578.

[28]

Li Y H, Liu L F, Yang F L. J. Membr. Sci., 2017, 525: 202.

[29]

Tu L L, Rong Y Y, Yu Z B, Chen S, Sun J L, Li Z H, Li J L, Hou Y P. Chemosphere, 2022, 295: 133787.

[30]

Zheng L S, Lin X Q, Liu Y F, Li H Y, Sun Y X, Li C J. Sci. Total Environ., 2022, 808: 151873.

[31]

Chen J F, Yang Y W, Liu Y Y, Tang M Z, Wang R J, Tian Y P, Jia C X. Bioresour. Technol., 2019, 276: 236.

[32]

Huang S J, Dwivedi K A, Kumar S, Wang C T. J. Environ. Eng., 2022, 148: 04022022.

[33]

Choi Y, Park T J, Lee D C, Lee S Y. Proc. Natl. Acad. Sci. U. S. A., 2018, 115: 5944.

[34]

Bruce E, Bert H, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. Environ. Sci. Technol., 200, 40: 5181.

[35]

Wu D, Sun F Q, Chua F J D, Zhou Y. Chem. Eng. J., 2020, 384: 123238.

[36]

Pathak V M, Navneet Bioresour. Bioprocess., 2017, 4: 15.

[37]

Zhang G Y, Liang D X, Zhao Z S, Qi J S, Huang L. Environ. Res., 2022, 206: 112605.

[38]

Ricco R, Malfatti L, Takahashi M, Hill A J, Falcaro P. J. Mater. Chem. A, 2013, 1: 13033.

[39]

Zhu M Y, Wang C J, Meng D H, Diao G W. J. Mater. Chem. A, 2013, 1: 2118.

[40]

Zeng L B, Li X Y, Fan S Y, Zhang M M, Yin Z F, Tade M, Liu SM. ACS Appl. Energ. Mater., 2018, 1: 3752.

[41]

Bai R, Tian X C, Wang S H, Yan W F, Gang H Y, Xiao Y. Prog. Chem., 2019, 31: 872.

[42]

Gahlawat G, Choudhury A R. RSC Adv., 2019, 9: 12944.

[43]

Shi L, Dong H L, Reguera G, Beyenal H, Lu A H, Liu J, Yu H Q, Fredrickson J K. Nat. Rev. Microbiol., 201, 14: 651.

[44]

Windt W D, Aelterman P, Verstraete W. Environ. Microbiol., 2005, 7: 314.

[45]

Choi Y, Lee S Y. Nat. Rev. Chem., 2020, 4: 638.

[46]

Wu X E, Zhao F, Rahunen N, Varcoe J R, Avignone-Rossa C, Thumser A E, Slade R C. Angew. Chem. Int. Edit., 2011, 50: 427.

[47]

Huang S F, Tang J H, Liu X, Dong G W, Zhou S G. ACS Sustain. Chem. Eng., 2019, 7: 15427.

[48]

Yi X F, Liu S R, Luo M Y, Li Q B, Wang Y P. J. Hazard. Mater., 2022, 431: 128633.

[49]

Zhu N Y, Tang J, Tang C L, Duan P F, Yao L G, Wu Y H, Dionysiou D D. Chem. Eng. J., 2018, 353: 237.

[50]

Martins M, Mourato C, Sanches S, Noronha J P, Crespo M T B, Pereira I A C. Water Res., 2017, 108: 160.

[51]

Jia Y T, Chen Y C, Hu Y Y. ACS Environ. Sci. Technol. Water, 2021, 1: 2412.

[52]

Mehrotra N, Tripathi R M, Zafar F, Singh M P. IEEE Trans. Nanobiosci., 2017, 16: 280.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/