Distribution Characteristics and Health Risk Assessment of Antimony in Atmospheric Particulates in a Northern City of China

Yiwen Shen , Hao Zhao , Changxian Zhao , Shuofei Dong , Yuanming Cao , Jiaojiao Xie , Meiling Lyu , Chungang Yuan

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (3) : 465 -471.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (3) : 465 -471. DOI: 10.1007/s40242-023-3044-y
Article

Distribution Characteristics and Health Risk Assessment of Antimony in Atmospheric Particulates in a Northern City of China

Author information +
History +
PDF

Abstract

Over the last several decades, scientists have established a wealth of evidence to demonstrate the risks posed to human health by toxic elements in atmospheric particulate matter(PM). Antimony(Sb), as one of ever ignored PM-bound heavy metals, attracts more and more attentions and has been regarded as one emerging air pollutant with the change of pollution sources of particulate matter. To study the distribution of Sb in PM with different particle sizes is of great practical significance for understanding its source and health risks. In this study, the size distributions of Sb in PM(PM2.5, PM10 and TSP) in different seasons were studied from July 2018 to May 2019. The high concentration of PM-bound Sb was found and the health risk was evaluated. Sb was enriched in fine particles and showed higher values in winter, which was probably caused by coal combustion and meteorological conditions. It was also found that traffic-related non-exhaust emissions might become another main contribution to fine particle Sb. Health risk assessment demonstrated that the hazard quotient (HQ) of Sb in PM2.5 and PM10 for children(PM2.5: 1.54, PM10: 1.32) exceeded the acceptable threshold and ingestion contributed the most to the HQ for both children and adults.

Keywords

Particulate matter(PM) / Antimony / Size distribution / Health risk

Cite this article

Download citation ▾
Yiwen Shen, Hao Zhao, Changxian Zhao, Shuofei Dong, Yuanming Cao, Jiaojiao Xie, Meiling Lyu, Chungang Yuan. Distribution Characteristics and Health Risk Assessment of Antimony in Atmospheric Particulates in a Northern City of China. Chemical Research in Chinese Universities, 2023, 39(3): 465-471 DOI:10.1007/s40242-023-3044-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

He M, Wang N, Long X, Zhang C, Ma C, Zhong Q, Wang A, Wang Y, Pervaiz A, Shan J. J. Environ. Sci., 2019, 75: 14.

[2]

Krachler M, Zheng J, Koerner R, Zdanowicz C, Fisher D, Shotyk W. J. Environ. Monitor., 2005, 7(12): 1169.

[3]

Sánchez-Rodas D, Alsioufi L, Sánchez de la Campa A M, González-Castanedo Y. J. Hazard. Mater., 2017, 324: 213.

[4]

Boreiko C J, Rossman T G. Toxicol. Appl. Pharm., 2020, 403: 115156.

[5]

Zhang Y, Ding C, Gong D, Deng Y, Huang Y, Zheng J, Xiong S, Tang R, Wang Y, Su L. Environ. Technol. Innov., 2021, 24: 102026.

[6]

Wang X, He S, Chen S, Zhang Y, Wang A, Luo J, Ye X, Mo Z, Wu L, Xu P. Int. J. Env. Res. Pub. He., 2018, 15(4): 583.

[7]

Shyam S, Jaya C. Int. J. Env. Res. Pub. He., 2010, 7: 4267.

[8]

Jiang J L, Wu Y J, Sun G Y, Zhang L M, Li Z G, Sommar J, Yao H, Feng X B. ACS Omega, 2021, 6(14): 9460.

[9]

Smichowski P. Talanta, 2008, 75(1): 2.

[10]

Varrica D, Bardelli F, Dongarrà G, Tamburo E. Atmos. Environ., 2013, 64: 18.

[11]

Tian H Z, Zhao D, He M C, Wang Y, Cheng K. Environ. Pollut., 2011, 159(6): 1613.

[12]

Lin Q, Liu E, Zhang E, Nath B, Shen J, Yuan H, Wang R. Sci. Total Environ., 2018, 613/614: 331.

[13]

Das R, Khezri B, Srivastava B, Datta S, Sikdar P K, Webster R D, Wang X F. Atmos. Pollut. Res., 2015, 6(5): 742.

[14]

Iijima A, Sato K, Fujitani Y, Fujimori E, Saito Y, Tanabe K, Ohara T, Kozawa K, Furuta N. Environ. Chem., 2009, 6(2): 122.

[15]

Qiu L M, Liu M, Wang J, Zhang S N, Fang C S. Chem. Res. Chinese Universities, 2012, 28(2): 204.

[16]

Juda-Rezler K, Zajusz-Zubek E, Reizer M, Maciejewska K, Kurek E, Bulska E, Klejnowski K. Atmos. Environ., 2021, 245: 117993.

[17]

Pant P, Baker S J, Goel R, Guttikunda S, Goel A, Shukla A, Harrison R M. Atmos. Pollut. Res., 201, 7(1): 100.

[18]

Iijima A, Sato K, Ikeda T, Sato H, Kozawa K, Furuta N. J. Anal. Atom. Spectrom., 2010, 25(3): 356.

[19]

Cheng K, Wang Y, Tian H, Gao X, Zhang Y, Wu X, Zhu C, Gao J. Environ. Sci. Technol., 2015, 49(2): 1206.

[20]

Fort M, Grimalt J O, Querol X, Casas M, Sunyer J. Sci. Total Environ., 201, 544: 391.

[21]

Ramírez O, Sánchez de la Campa A M, Sánchez-Rodas D, de la Rosa J D. Sci. Total Environ., 2020, 710: 136344.

[22]

Xie J J, Yuan C G, Xie J, Shen Y W, Zha D W, Zhang K G, Zhu H T. Environ. Sci. Pollut. Res., 2019, 30: 30826.

[23]

Das R, Khezri B, Srivastava B, Datta S, Sikdar P K, Webster R D, Wang X. Atmos. Pollut. Res., 2015, 6(5): 742.

[24]

Tan J H, Duan J C, Ma Y L, Yang F M, Yuan C, He K B, Yu Y C, Wang J W. Sci. Total Environ., 2014, 493: 262.

[25]

Moniruzzaman M, Shaikh M A A, Saha B, Shahrukh S, Jawaa Z T, Khan M F. Chemosphere, 2022, 309: 136794.

[26]

China National Environmental Monitoring Centre(CNEMC) Background Values of Soil Elements in China, 1990, Beijing: China Environmental Science Press

[27]

U. S. Environmental Protection Agency USEPA, Risk Assessment Guidance for Superfund(RAGS), Volume I Human Health Evaluation Manual(Part F, Supplemental Guidance for Inhalation Risk Assessment), 2009

[28]

Hao Y, Luo B, Simayi M, Zhang W, Jiang Y, He J, Xie S. Environ. Pollut., 2020, 265: 114910.

[29]

Lyu Y, Zhang K, Chai F, Cheng T, Yang Q, Zheng Z, Li X. Environ. Pollut., 2017, 224: 559.

[30]

Liang B, Li X L, Ma K, Liang S. Ecotox. Environ. Safe., 2019, 170: 166.

[31]

Zhi M, Zhang X, Zhang K, Ussher S J, Lv W, Li J, Gao J, Luo Y, Meng F. Ecotox. Environ. Safe., 2021, 211: 111937.

[32]

Wang J, Hu Z, Chen Y, Chen Z, Xu S. Atmos. Environ., 2013, 68: 221.

[33]

Sun L, Zhang X, Zheng J, Zheng Y, Yuan D, Chen W. Atmos. Environ., 2021, 261: 118604.

[34]

Guo F, Tang M, Wang X, Yu Z, Wei F, Zhang X, Jin M, Wang J, Xu D, Chen Z, Chen K. Atmos. Environ., 2022, 289: 119314.

[35]

Gao P, Guo H, Zhang Z, Ou C, Hang J, Fan Q, He C, Wu B, Feng Y, Xing B. Environ. Pollut., 2018, 242: 1669.

[36]

Gao J, Tian H, Cheng K, Lu L, Wang Y, Wu Y, Zhu C, Liu K, Zhou J, Liu X, Chen J, Hao J. Atmos. Environ., 2014, 99: 257.

[37]

Mbengue S, Alleman LY, Flament P. Atmos. Res., 2017, 183: 202.

[38]

Wu Y, Lu B, Zhu X, Wang A, Yang M, Gu S, Wang X, Leng P, Zierold K M, Li X, Tang K K, Fang L, Huang R, Xu G, Chen L. Aerosol Air Qual. Res., 2019, 19(9): 2083.

[39]

Duan X, Yan Y, Li R, Deng M, Hu D, Peng L. Atmos. Pollut. Res., 2021, 12(1): 365.

[40]

Furuta N, Iijima A, Kambe A, Sakai K, Sato K. J. Environ. Monitor., 2005, 7(12): 1155.

[41]

Chen J, Zhang B, Zhang S, Zeng J, Chen P, Liu W, Wang X. Environ. Geochem. Helth., 2021, 43(5): 1817.

[42]

Iijima A, Sato K, Yano K, Tago H, Kato M, Kimura H, Furuta N. Atmos. Environ., 2007, 41(23): 4908.

[43]

Garg B D, Cadle S H, Mulawa P A, Groblicki P J. Environ. Sci. Technol., 2000, 34(21): 4463.

[44]

Piscitello A, Bianco C, Casasso A, Sethi R. Sci. Total Environ., 2021, 766: 144440.

[45]

Ramírez O, Sánchez de la Campa A M, Sánchez-Rodas D, de la Rosa J D. Sci. Total Environ., 2020, 710: 136344.

[46]

Jaiprakash, Habib G. Sci. Total Environ., 2017, 586: 900.

[47]

Quiroz W, Cortés M, Astudillo F, Bravo M, Cereceda F, Vidal V, Lobos M G. Microchem. J., 2013, 110: 266.

[48]

Ramírez O, Sánchez de la Campa A M, Sánchez-Rodas D, de la Rosa J D. Sci. Total Environ., 2020, 710: 136344.

[49]

Huang C L, Bao L J, Luo P, Wang Z Y, Li S M, Zeng E Y. J. Hazard. Mater., 201, 317: 449.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/