Formation of Iodinated Trihalomethane Disinfection By-products by Co-oxidation of Natural Organic Matter with Sodium Hypochlorite and Lead Dioxide

Junyao Wang , Xialin Hu , Meichuan Liu , Daqiang Yin

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (3) : 449 -454.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (3) : 449 -454. DOI: 10.1007/s40242-023-3042-0
Article

Formation of Iodinated Trihalomethane Disinfection By-products by Co-oxidation of Natural Organic Matter with Sodium Hypochlorite and Lead Dioxide

Author information +
History +
PDF

Abstract

Iodinated trihalomethanes(I-THMs) in drinking water pipelines have attracted wide attention due to their high toxicity. The coexistence of widely present lead dioxide(PbO2) with commonly used disinfectant sodium hypochlorite(NaClO) in drinking water might change the formation characteristics of I-THMs due to the strongly oxidizing properties of PbO2. This study investigated the formation of I-THMs during the co-oxidation of natural organic matter including humic acid(HA), extracellular organic matter(EOM), and intracellular organic matter(IOM) of algogenic organic matter by PbO2 and NaClO. Triiodomethane(CHI3) is the dominant product in the single oxidation system of PbO2, whereas trichloromethane (CHCl3), chlorodiiodomethane(CHClI2), and dichloroiodomethane (CHCl2I) are the major products in the single NaClO system. In the co-oxidation system, the dominant I-THMs are similar to those in the single NaClO system. However, the CHCl3 content decreased to 56.4% whereas I-THMs concentrations remained unchanged with the increase of PbO2 concentration. The main reason is attributed to the reduced residual chlorine content due to the reaction of PbO2 with NaClO. IOM is more prone to forming I-THMs than HA and EOM due to the specified structures. This study suggested that PbO2 in the drinking water supply pipelines might change the risk of THMs.

Keywords

Lead dioxide / Iodinated trihalomethane / Humic acid / Algogenic organic matter

Cite this article

Download citation ▾
Junyao Wang, Xialin Hu, Meichuan Liu, Daqiang Yin. Formation of Iodinated Trihalomethane Disinfection By-products by Co-oxidation of Natural Organic Matter with Sodium Hypochlorite and Lead Dioxide. Chemical Research in Chinese Universities, 2023, 39(3): 449-454 DOI:10.1007/s40242-023-3042-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

How Z T, Kristiana I, Busetti F, Linge K L, Joll C A. J. Environ. Sci., 2017, 58: 2.

[2]

Fang C, Krasner S W, Chu W, Ding S, Zhao T, Gao N. Water Res., 2018, 145: 103.

[3]

Li C, Lin Q F, Dong F L, Li Y H, Luo F, Zhang K J. Chemosphere, 2019, 217: 355.

[4]

Liu X, Chen L, Yang M, Tan C, Chu W. Water Res., 2020, 184: 116076.

[5]

Liu D C, Rao L, Shi X Y, Du J Y, Chen C, Sun W J, Fu M L, Yuan B L. Sci. Total Environ., 2022, 838: 156078.

[6]

Wang J, Zhang J, Huang S Q, Hu Y, Mu Y. Water Res., 2021, 200: 117256.

[7]

Mouly D, Joulin E, Rosin C, Beaudeau P, Zeghnoun A, Olszewski-Ortar A, Munoz J F, Welte B, Joyeux M, Seux R, Montiel A, Rodriguez M J. Water Res., 2010, 44(18): 5168.

[8]

Ding H H, Meng L P, Zhang H F, Yu J W, An W, Hu J Y, Yang M. Environ. Sci.: Proc. Imp., 2013, 15(7): 1424.

[9]

Harvey P J, Handley H K, Taylor M P. Environ. Res., 201, 151: 275.

[10]

Peng Y-C, Lu Y-F, Lin Y-P. Environ. Sci. Technol., 2022, 56(17): 12218.

[11]

Hu J, Xu Y, Chen Y, Chen J, Dong H, Yu J, Qiang Z, Qu J, Chen J. Water Res., 2021, 188: 116551.

[12]

Edwards M, Dudi A. J. Am. Water Works Assn., 2004, 96(10): 69.

[13]

Wu Q, Zhang T, Sun H W, Kannan K. Arch. Environ. Con. Tox., 2010, 58(3): 543.

[14]

Xue G, Liu H H, Chen Q Y, Hills C, Tyrer M, Innocent F. J. Hazard. Mater., 2011, 186(1): 765.

[15]

Xie P, Ma J, Fang J, Guan Y, Yue S, Li X, Chen L. Environ. Sci. Technol., 2013, 47(24): 14051.

[16]

He H-Y, Qiu W, Liu Y-L, Yu H-R, Wang L, Ma J. Water Res., 2021, 190: 116690.

[17]

Zhou S Q, Shao Y S, Gao N Y, Deng Y, Li L, Deng J, Tan C Q. Water Res., 2014, 52: 199.

[18]

Pivokonsky M, Kloucek O, Pivokonska L. Water Res., 200, 40(16): 3045.

[19]

Yang X, Guo W H, Shen Q Q. J. Hazard. Mater., 2011, 197: 378.

[20]

Hua L-C, Lin J-L, Chen P-C, Huang C. Chem. Eng. J., 2017, 328: 1022.

[21]

Gong T, Zhang X. Water Res., 2013, 47(17): 6660.

[22]

Liu Z, Lin Y L, Zhang T Y, Hu C Y, Zheng Z X, Tang Y L, Cao T C, Xu B, Gao N Y. J. Hazard. Mater., 2022, 429: 128370.

[23]

Li T, Jiang Y, An X Q, Liu H J, Hu C, Qu J H. Water Res., 201, 102: 421.

[24]

Wang Y P, Li F, Du J Y, Shi X Y, Tang A X, Fu M L, Sun W J, Yuan B L. Sci. Total Environ., 2021, 798: 149210.

[25]

Hua G, Kim J, Reckhow D A. Water Res., 2014, 63: 285.

[26]

Sakai H, Tokuhara S, Murakami M, Kosaka K, Oguma K, Takizawa S. Water Res., 201, 88: 661.

[27]

Tighe M, Beidinger H, Knaub C, Sisk M, Peaslee G F, Lieberman M. Chemosphere, 2019, 234: 297.

[28]

Cai Z, Duan S, Zhu H. Journal of Southern Argiculture, 2012, 43(10): 1480.

[29]

U.S. EPA, Method 551.1: Determination of Chlorination Disinfection Byproducts, Chlorinated Solvents, and Halogenated Pesticides/Herbicides in Drinking Water by Liquid-Liquid Extraction and Gas Chromatography with Electron-Capture Detection, Revision 1.0, Cincinnati, 1995

[30]

Gallard H, Allard S, Nicolau R, Von Gunten U, Croue J P. Environ. Sci. Technol., 2009, 43(18): 7003.

[31]

Shah A D, Mitch W A. Environ. Sci. Technol., 2012, 46(1): 119.

[32]

Allard S, Von Gunten U, Sahli E, Nicolau R, Gallard H. Water Res., 2009, 43(14): 3417.

[33]

Liu J, Wang J, Zhang J, Mu Y. Sci. Total Environ., 2019, 671: 101.

[34]

Tian F X, Hu X J, Xu B, Zhang T Y, Gao Y Q. J. Hazard. Mater., 2017, 326: 138.

[35]

Yang Y, Komaki Y, Kimura S Y, Hu H-Y, Wagner E D, Marinas B J, Plewa M J. Environ. Sci. Technol., 2014, 48(20): 12362.

[36]

Bichsel Y, Von Gunten U. Environ. Sci. Technol., 1999, 33(22): 4040.

[37]

Huang R, Liu Z, Yan B, Zhang J, Liu D, Xu Y, Wang P, Cui F, Liu Z. Environ. Pollut., 2019, 245: 63.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/