Equation-of-motion/Linear-response Coupled Cluster Methods with an Approximate Treatment on Triples for Singly-excited States with Pronounced Double Excitation Character

Yanmei Hu , Yanzhao Lu , Zhifan Wang , Fan Wang

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 998 -1004.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 998 -1004. DOI: 10.1007/s40242-023-3035-z
Article

Equation-of-motion/Linear-response Coupled Cluster Methods with an Approximate Treatment on Triples for Singly-excited States with Pronounced Double Excitation Character

Author information +
History +
PDF

Abstract

In this work, we investigate the performance of various equation-of-motion/linear-response coupled cluster(EOM/LR-CC) methods with an approximate treatment for triples on excitation energies (EEs) by comparing with EOM-CCSDT(SDT=single, double, triple excitations) results. The focus of this work is on singly-excited states with percentages of the single excitation part(R 1, %) from CC3 between 50% and 80%, i.e., excited states with a pronounced double excitation character. CC3 is shown to provide EEs that agree well with EOM-CCSDT results for such excited states. Moreover, reliable EEs can be obtained with EOM-CCSD(T)(a)* and CCSDR(3) for excited states with R 1 from CC3 larger than 80%. As for singly-excited states with R 1 from CC3 between 80% and 50%, EEs with EOM-CCSD*, CCSDR(T) and δ-CR-EOM-CC(2,3)-D agree reasonably well with those of EOM-CCSDT. However, it is too costly to choose a proper method for singly-excited states based on R 1 of CC3 since CC3 is a rather expensive method. On the other hand, our results show that difference between EEs with EOM-CCSD and EOM-CCSD(T)(a)* [ΔE (T)(a)*] correlates well with R 1 from CC3 and ΔE (T)(a)* is about 0.25 eV when R 1(CC3) is 80%. Appropriate methods to obtain reasonable EEs for singly-excited state can be chosen based on whether ΔE (T)(a)* is larger than 0.25 eV.

Keywords

Excitation energy / Equation-of-motion/linear-response coupled cluster theory / Double excitation character / Triple excitation

Cite this article

Download citation ▾
Yanmei Hu, Yanzhao Lu, Zhifan Wang, Fan Wang. Equation-of-motion/Linear-response Coupled Cluster Methods with an Approximate Treatment on Triples for Singly-excited States with Pronounced Double Excitation Character. Chemical Research in Chinese Universities, 2023, 39(6): 998-1004 DOI:10.1007/s40242-023-3035-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dreuw A. Chem. Phys. Chem., 200, 7: 2259.

[2]

Plasser F, Barbatti M. Theor. Chem. Acc., 2012, 131: 1.

[3]

Oddershede J, Grūner N E, Diercksen G H. Chem. Phys., 1985, 97: 303.

[4]

Andersson K, Malmqvist P A, Roos B O. J. Phys. Chem., 1990, 94: 5483.

[5]

Roos B O, Malmqvist P A. Phys. Chem. Chem. Phys., 2004, 6: 2919.

[6]

Thyssen J, Fleig T, Jensen H J A. J. Chem. Phys., 2008, 129: 034109.

[7]

Casida M E. Recent Advances in Density Functional Methods, 1995, Singapore: World Scientific Publishing

[8]

Maitra N T, Zhang F, Cave R J. J. Chem. Phys., 2004, 120(13): 5932.

[9]

Cederbaum LS, Schirmer J, Walter O. Phys. Rev. A, 1983, 28: 1237.

[10]

Dreuw A, Wormit M. WIREs Comput. Mol. Sci., 2015, 5: 82.

[11]

Koch H, Jørgensen P. J. Chem. Phys., 1990, 93: 3333.

[12]

Christiansen O, Koch H. J. Chem. Phys., 199, 105: 1451.

[13]

Stanton J F, Bartlett R J. J. Chem. Phys., 1993, 98: 7029.

[14]

Bartlett R J, Musiał M. Rev. Mod. Phys., 2007, 79: 291.

[15]

Stanton J F, Gauss J. J. Chem. Phys., 1999, 111: 8785.

[16]

Geertsen J, Rittby M, Bartlett R J. Chem. Phys. Lett., 1989, 164: 57.

[17]

Kucharski S A, Włoch M, Musiał M, Bartlett R J. J. Chem. Phys., 2001, 115: 8263.

[18]

Kowalski K, Piecuch P. J. Chem. Phys., 2001, 115: 643.

[19]

Watts J D, Bartlett R J. Chem. Phys. Lett., 199, 258: 581.

[20]

Christiansen O, Koch H, Jørgensen P. J. Chem. Phys., 1995, 103: 7429.

[21]

Kánnár D, Tajti A, Szalay P G. J. Chem. Theory Comput., 2017, 13: 202.

[22]

Watts J D, Bartlett R J. Chem. Phys. Lett., 1995, 233: 81.

[23]

Watson J T Jr., Lotrich V F. J. Phys. Chem. A, 2013, 117: 2569.

[24]

Stanton J F, Gauss J. Theor. Chim. Acta, 199, 93: 303.

[25]

Saeh J C, Stanton J F. J. Chem. Phys., 1999, 111: 8275.

[26]

Matthews D A, Stanton J F. J. Chem. Phys., 201, 145: 124102.

[27]

Kowalski K, Piecuch P. J. Chem. Phys, 2004, 120: 1715.

[28]

Piecuch P, Hansen J A, Ajala A O. Mol. Phys., 2015, 113: 3085.

[29]

Veril M., Scemama A., Caffarel M., Comput. Mol. Sci., 2021, 11, e1517

[30]

Loos P F, Boggio-Pasqua M. J. Chem. Theory Comput., 2019, 15: 1939.

[31]

Loos P F, Scemama A. J. Chem. Theory Comput., 2020, 166: 3720.

[32]

Loos P F, Comin M, Blase X X. J. Chem. Theory Comput., 2021, 17: 3666.

[33]

Loos P F, Lipparini F, Matthews D A. J. Chem. Theory Comput., 2022, 18: 4418.

[34]

Schreiber M, Silvajunior M R, Sauer S P A, Thiel W. J. Chem. Phys., 2008, 128: 134110.

[35]

Dunning T H Jr. J. Chem. Phys., 1989, 90(2): 1007.

[36]

Silva-Junior M R, Sauer S P A, Schreiber M. Mol. Phys., 2010, 108: 453.

[37]

Stanton J. F., Gauss J., Cheng L., Harding M. E., Matthews D. A., Szalay P. G., Auer A. A., Bartlett R. J., Benedikt U., Berger C., Bernholdt D. E., Bomble Y. J., Christiansen O., Engel F., Faber R., Heckert M., Heun O., Hilgenberg M., Huber C., Jagau T.-C., Jonsson D., Jusélius J., Kirsch T., Klein K., Lauderdale W. J., Lipparini F., Metzroth T., Mück L. A., Neill D. P. O., Price D. R., Prochnow E., Puzzarini C., Ruud K., Schiffmann F., Schwalbach W., Simmons C., Stopkowicz S., Tajti A., Vázquez J., Wang F., CFOUR(Revision 2.1), Gainesville and Mainz, 2020

[38]

Matthews D A, Cheng L, Harding M E, Lipparini F, Stopkowicz S, Jagau T-C, Péter G S, Jürgen G, John F S. J. Chem. Phys., 2020, 152: 214108.

[39]

Aidas K, Angeli C, Bak KL, Bakken V, Bast R, Boman L, Christiansen O, Cimiraglia R, Coriani S, Dahle P, Dalskov EK, Ekström U, Enevoldsen T, Eriksen J J, Ettenhuber P, Fernández B, Ferrighi L, Fliegl H, Frediani L, Hald K, Halkier A, Hättig C, Heiberg H, Helgaker T, Hennum A C, Hettema H, Hjertenæs E, Høst S, Høyvik I-M, Iozzi M F, Jansik B, Jensen H J A, Jons-son D, Jørgensen P, Kauczor J, Kirpekar S, Kjærgaard T, Klop-per W, Knecht S, Kobayashi R, Koch H, Kongsted J, Krapp A, Kristensen K, Ligabue A, Lutnæs O B, Melo J I, Mikkelsen K V, Myhre R H, Neiss C, Nielsen C B, Norman P, Olsen J, Olsen J M H, Osted A, Packer M J, Pawlowski F, Pedersen T B, Provasi P F, Reine S, Rinkevicius Z, Ruden T A, Ruud K, Rybkin V, Steindal A H, Sylvester-Hvid K O, Taylor P R, Teale A M, Tellgren E I, Tew D P, Thorvaldsen A J, Thøgersen L, Vahtras O, Watson M A, Wilson D J D, Ziolkowski M, Ågren H. WIREs Comput. Mol. Sci., 2014, 4: 269.

[40]

Barca GMJ, Bertoni C, Carrington L, Datta D, DeSilva N, Deustua J E, Dmitri G F, Jeffrey R G, Ana-stasia O G, Emilie G, Taylor H, Stephan I, Joe I, Karol K, Sarom S L, Hui L, Wei L, Jesse J L, Ilias M, Joani M, Vladimir M, Hi-roya N, Buu Q P, Piotr P, David P, Spencer R P, Alistair P R, Luke B R, Klaus R, Tosaporn S, Michael W S, Jun S, Lyudmila S, Masha S, Vaibhav S, Ananta T, Jorge L G V, Bryce W, Marta W, Peng X, Federico Z, Gordon M S G 2 R. J. Chem. Phys., 2020, 152: 154102.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/