Ultrasound Treatment Reducing the Production of VBNC Bacteria in the Process of Chlorine Disinfection: Efficiency and Mechanisms

Zheng Qi , Chunguang Liu

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (3) : 425 -433.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (3) : 425 -433. DOI: 10.1007/s40242-023-3023-3
Article

Ultrasound Treatment Reducing the Production of VBNC Bacteria in the Process of Chlorine Disinfection: Efficiency and Mechanisms

Author information +
History +
PDF

Abstract

The production and reactivation of viable but nonculturable(VBNC) bacteria by chlorine disinfection leads to an overestimation of the disinfection effect and brings health risks. Therefore, this study is to evaluate the disinfection efficiency of combined ultrasound(US) and chlorine in inhibiting the production and reactivation of VBNC bacteria and to clarify the mechanisms. The number of culturable cells was effectively reduced by 99.97% after US/chlorine treatments. The number of VBNC bacteria introduced by US treatment and chlorine treatment was 103.6 CFU/ mL and 105.2 CFU/mL, respectively. However, US/chlorine disinfection produces fewer VBNC bacteria(101.3 CFU/mL), and the dark reactivation of the VBNC bacteria was effectively inhibited. Ultrasound and chlorine have synergistic effects in disinfection-ultrasound further enhancing bacterial membrane permeability and chlorine-induced oxidative stress, causing the bacterial antioxidant system to collapse. In addition, single cell Raman spectroscopy and gas chromatography-tandem mass spectrometry(GC-MS/MS) analysis revealed that US/chlorine treatment inhibits more strongly or even destroys the metabolism of bacteria. The significantly perturbed metabolic pathways mainly involved the amino acid, carbohydrate and lipid metabolisms. Thus, the combined US/chlorine treatment is a promising cleaner and a more efficient disinfection technology to remove VBNC bacteria in the field of water purification.

Keywords

Ultrasonic disinfection / Oxidative stress / Viable but nonculturable(VBNC) bacterium / Untargeted metabolomics

Cite this article

Download citation ▾
Zheng Qi, Chunguang Liu. Ultrasound Treatment Reducing the Production of VBNC Bacteria in the Process of Chlorine Disinfection: Efficiency and Mechanisms. Chemical Research in Chinese Universities, 2023, 39(3): 425-433 DOI:10.1007/s40242-023-3023-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kittler S, Wittmann J, Mengden R A L P, Klein G, Rohde C, Lehnherr H. Sustainable Chemistry and Pharmacy, 2017, 5: 80.

[2]

Ye C S, Lin H R, Zhang M L, Chen S, Yu X. Scientific Reports, 2020, 10(1): 11.

[3]

White J K, Nielsen J L, Larsen C M, Madsen A M. International Journal of Hygiene and Environmental Health, 2020, 230: 113608.

[4]

Zhou A D, Wang L, Zhang J F, Yang X Q, Ou Z H, Zhao L C. Microbial Pathogenesis, 2021, 158: 105064.

[5]

Gehr R. Environmental Science & Technology, 2015, 49(12): 7501.

[6]

Arun K B, Sindhu R, Alex D, Binod P, Pughazhendi A, Joseph T C, Pandey A, Kuddus M, Pillai S, Emmanual S, Awasthi M K, Madhavan A. Sustainable Chemistry and Pharmacy, 2022, 27: 100650.

[7]

Kumar S S, Ghosh A R. Microbiology(Reading), 2019, 165(6): 593.

[8]

Xu Z B, Xu R R, Soteyome T, Deng Y, Chen L, Liang Y, Bai C Y, Huang T Y, Liu J Y, Harro J M, Kjellerup B V. Microbial Pathogenesis, 2020, 145: 5.

[9]

Bedard E, Charron D, Lalancette C, Deziel E, Prevost M. Fems Microbiology Letters, 2014, 356(2): 226.

[10]

Zhang S H, Ye C S, Lin H R, Lv L, Yu X. Environmental Science & Technology, 2015, 49(3): 1721.

[11]

Mielko K A, Jablonski S J, Milczewska J, Sands D, Lukaszewicz M, Mlynarz P. World Journal of Microbiology & Biotechnology, 2019, 35(11): 11.

[12]

Chen S, Li X, Wang Y H, Zeng J, Ye C S, Li X P, Guo L Z, Zhang S H, Yu X. Water Research, 2018, 142: 279.

[13]

Jing Z, Lu Z, Mao T, Cao W, Wang W, Ke Y, Zhao Z, Wang X, Sun W. Science of The Total Environment, 2021, 776: 145986.

[14]

Chen S, Li X, Wang Y, Zeng J, Ye C, Li X, Guo L, Zhang S, Yu X. Water Research, 2018, 142: 279.

[15]

Wang T., Stadler F. J., Husein D. Z., Zhang D., Cai J., Wang Y., Li M., Qiang Y., Zheng J., Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 130235

[16]

Issaoui M, Jellali S, Zorpas A A, Dutournie P. Sustainable Chemistry and Pharmacy, 2022, 25: 100590.

[17]

Long L, Bu Y, Chen B, Sadiq R. Water Research, 2019, 161: 89.

[18]

Ding S, Wang F, Chu W, Fang C, Pan Y, Lu S, Gao N. Water Research, 2019, 167: 115096.

[19]

Wang J, Zhang Y, Yu Y, Wu Z, Wang H. Ultrasonics Sonochemistry, 2021, 76: 105622.

[20]

He Q, Liu Y, Liu D, Guo M. Science of The Total Environment, 2021, 791: 148366.

[21]

Wu W, Gao H, Chen H, Fang X, Han Q, Zhong Q. LWT, 2019, 101: 757.

[22]

Xia D, Tang Z, Wang Y, Yin R, He H, Xie X, Sun J, He C, Wong P K, Zhang G. Chemical Engineering Journal, 2020, 400: 125894.

[23]

Casasola-Rodriguez B, Ruiz-Palacios G M, Pilar R C, Losano L, Ignacio M R, de Velasquez M T O. Fems Microbiology Letters, 2018, 365(15): 8.

[24]

Zacharias N, Kistemann T, Schreiber C. International Journal of Hygiene and Environmental Health, 2015, 218(8): 714.

[25]

Wang L, Ye C, Guo L, Chen C, Kong X, Chen Y, Shu L, Wang P, Yu X, Fang J. Environmental Science & Technology, 2021, 55(13): 9221.

[26]

Rocard J M, Asadishad B, Samonte P R V, Ghoshal S, Tufenkji N. Water Research X, 2018, 1: 100005.

[27]

Karaca B, Akcelik N, Akcelik M. Biologia, 2013, 68(1): 1.

[28]

Lorenz B, Wichmann C, Stockel S, Rosch P, Popp J. Trends in Microbiology, 2017, 25(5): 413.

[29]

Yang K, Li H Z, Zhu X, Su J Q, Ren B, Zhu Y G, Cui L. Analytical Chemistry, 2019, 91(9): 6296.

[30]

Berry D, Mader E, Lee T K, Woebken D, Wang Y, Zhu D, Palatinszky M, Schintimeister A, Schmid M C, Hanson B T, Shterzer N, Mizrahi I, Rauch I, Decker T, Bocklitz T, Popp J, Gibson C M, Fowler P W, Huang W E, Wagner M. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(2): E194.

[31]

Guo L, Ye C, Cui L, Wan K, Chen S, Zhang S, Yu X. Environment International, 2019, 130: 104883.

[32]

Yang P, Zhou X F, Wang L L, Li Q S, Zhou T, Chen Y K, Zhao Z Y, He B Y. International Journal of Environmental Research and Public Health, 2018, 15(7): 12.

[33]

Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie A R. Nature Protocols, 2015, 10(9): 1457.

[34]

Pereira C S, Thompson J A, Xavier K B. Fems Microbiology Reviews, 2013, 37(2): 156.

[35]

Ayrapetyan M, Williams T C, Oliver J D. Applied and Environmental Microbiology, 2014, 80(8): 2478.

[36]

Tao Y F, Wang Y, Huang S, Zhu P F, Huang W E, Ling J Q, Xu J. Analytical Chemistry, 2017, 89(7): 4108.

[37]

Fischer C R, Bowen B P, Pan C L, Northen T R, Banfield J F. ACS Chemical Biology, 2013, 8(8): 1755.

[38]

Feehily C, Karatzas K A G. Journal of Applied Microbiology, 2013, 114(1): 11.

[39]

Belenky P, Ye J D, Porter C B M, Cohen N R, Lobritz M A, Ferrante T, Jain S, Korry B J, Schwarz E G, Walker G C, Collins J J. Cell Reports, 2015, 13(5): 968.

[40]

Zhang Y-M, Rock C O. Nature Reviews Microbiology, 2008, 6(3): 222.

[41]

Wolfe A J. Microbiology Spectrum, 2015, 3(3): 1.

[42]

Zheng T T, Li J, Liu C G. Ecotoxicology and Environmental Safety, 2021, 208: 111770.

[43]

Ye C, Lin H, Zhang M, Chen S, Yu X. Scientific Reports, 2020, 10(1): 1957.

[44]

Ji B, Zhu L, Wang S Y, Qin H, Ma Y Q, Liu Y. Science of the Total Environment, 2020, 704: 135453.

[45]

Varma S D, Hegde K, Henein M. Biochimica Et Biophysica Acta: General Subjects, 2003, 1621(3): 246.

[46]

Wu B Y, Zhu L Z, Le X C. Environmental Pollution, 2017, 230: 302.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/