Assessing the Adverse Impacts of PM2.5 on Olfactory System Using an Air-liquid Interface Culture Model of Primary Olfactory Epithelial Cells

Huan Wang , Ting Xu , Sheng Wei , Miao Cao , Daqiang Yin

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (3) : 415 -424.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (3) : 415 -424. DOI: 10.1007/s40242-023-3019-z
Article

Assessing the Adverse Impacts of PM2.5 on Olfactory System Using an Air-liquid Interface Culture Model of Primary Olfactory Epithelial Cells

Author information +
History +
PDF

Abstract

The air-liquid interface(ALI) culture is a kind of recently developed system, which has proved its availability in simulating the biology of respiratory tract epithelial tissues. In this study, an ALI-based mouse primary olfactory epithelial cell(OEC) model was established to perform the exposure of PM2.5 (PM=particulate matter) collected from Dianshan Lake(Shanghai) and Wangdu(Hebei). The results showed that PM2.5 in both regions caused a decrease in cell viability in a dose-dependent manner. The 0.5 and 5 µg/cm2(around ambient concentrations) of PM2.5 disrupted OEC membrane integrity and produced oxidative stress with elevated indicators of malondialdehyde(MDA) and reactive oxygen species(ROS). In transcriptomic sequencing, the terms concerning inflammatory cytokines and second messenger cyclic adenosine-3′,5′-monophoshate(cAMP) were enriched in two treatments. The cytokine array showed the levels of some cytokines were altered, although inflammatory responses may not remarkably occur. Meanwhile, PM2.5 disturbed cAMP contents and key genes in the cAMP signaling pathway. The effects of PM2.5 of both regions were largely consistent, while Wangdu samples caused more ROS and Dianshan Lake samples tended to induce inflammatory injury. Thus, with the application of a novel ALI-based in vitro OEC model, our study demonstrated that ambient PM2.5 has the ability to threaten the physiologies and functions of the olfactory system.

Keywords

Air-liquid interface / Olfactory epithelial cell / PM2.5 / Inflammatory cytokines / Cyclic adenosine-3′,5′-monophoshate (cAMP)

Cite this article

Download citation ▾
Huan Wang, Ting Xu, Sheng Wei, Miao Cao, Daqiang Yin. Assessing the Adverse Impacts of PM2.5 on Olfactory System Using an Air-liquid Interface Culture Model of Primary Olfactory Epithelial Cells. Chemical Research in Chinese Universities, 2023, 39(3): 415-424 DOI:10.1007/s40242-023-3019-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chew S, Lampinen R, Saveleva L. Part Fibre. Toxicol., 2020, 17(1): 18.

[2]

Andersson J, Oudin A, Nordin S, Forsberg B, Nordin M. Int. J. Environ. Health Res., 2021, 30: 1.

[3]

Chen R, Hu B, Liu Y. Biochim. Biophys. Acta, 201, 1860(12): 2844.

[4]

Kim B Y, Park J Y, Cho K J, Bae J H. Am. J. Rhinol. Allergy., 2021, 36(1): 81.

[5]

Qi G Z, Wang Z B, Wei L J, Wang Z X. Environ. Sci. Pollut. Res., 2022, 29: 77081.

[6]

Hammer M S, van Donkelaar A, Li C, Lyapustin A, Sayer A M, Hsu N C, Levy R C, Garay M J, Kalashnikova O V, Kahn R A, Brauer M, Apte J S, Henze D K, Zhang L, Zhang Q, Ford B, Pierce J R, Martin R V. Environ. Sci. Technol., 2020, 54(13): 7879.

[7]

World Health Organization, WHO Global Air Quality Guidelines, Licence: CC BY-NC-SA 3.0 IGO, Geneva, 2021

[8]

Zanobetti A, Dominici F, Wang Y, Schwartz J D. Environ. Health., 2014, 13(1): 38.

[9]

Liu F, Huang Y, Zhang F, Chen Q, Wu B, Rui W, Zheng J, C, Ding W. J. Neurochem., 2015, 134(2): 315.

[10]

Doty R L. Ann. Neurol., 2008, 63(1): 7.

[11]

Ailshire J A, Crimmins E M. Am. J. Epidemiol., 2014, 180(4): 359.

[12]

Bhatt D P, Puig K L, Gorr M W, Wold L E, Combs C K. PLoS One, 2015, 10(5): e0127102.

[13]

Kim J, Choi Y, Ahn M, Ekanayake P, Tanaka A, Matsuda H, Shin T. Acta Histochem., 2019, 121(5): 546.

[14]

Innamorato N G, Rojo A I, Garcia-Yague A J, Yamamoto M, de Ceballos M L, Cuadrado A. J. Immunol., 2008, 181: 680.

[15]

Cheng H, Saffari A, Sioutas C, Forman H J, Morgan T E, Finch C E. Environ. Health. Perspect., 201, 124(10): 1537.

[16]

Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreylin W, Cox C. Inhale. Toxicol., 2004, 16(6/7): 437.

[17]

Calderon-Garciduenas L, Azzarelli B, Acuna H, Garcia R, Gambling T M, Osnaya N, Monroy S, Mr D E L T, Carson J L. Toxicol. Pathol., 2002, 30: 373.

[18]

Calderon-Garciduenas L, Mora-Tiscareno A, Ontiveros E, Gomez-Garza G, Barragan-Mejia G, Broadway J, Chapman S, Valencia-Salazar G, Jewells V, Maronpot R R. Brain Cogn., 2008, 68(2): 117.

[19]

Garcia G J, Schroeter J D, Kimbell J S. Inhal Toxicol., 2015, 27(8): 394.

[20]

Xian M, Ma S, Wang K, Lou H, Wang Y, Zhang L, Wang C, Akdis C A. Allergy Asthma Immunol., 2020, 12: 56.

[21]

Hu Y, Sheng Y H, Ji X L, Liu P, Tang L M, Chen G, Chen G L. Pulm Pharmacol Ther., 2020, 63: 101939.

[22]

Lenz A G, Stoeger T, Cei D, Schmidmeir M, Semren N, Burgstaller G, Lentner B, Eickelberg O, Meiners S, Schmid O. Am. J. Respir. Cell Mol. Biol., 2014, 51(4): 526.

[23]

Hufnagel M, May N, Wall J. Nanomaterials, 2021, 11(7): 1685.

[24]

Lynch I, Ahluwalia A, Boraschi D, Byrne H J, Fadeel B, Gehr P. Bio. Nano Mater., 2013, 14(3/4): 195.

[25]

Bachler G, Losert S, Umehara Y, von Goetz N, Rodriguez-Lorenzo L, Petri-Fink A, Rothen-Rutishauser B, Hungerbuehler K. Part Fibre Toxicol., 2015, 12: 18.

[26]

Chortarea S, Barosova H, Clift M J D, Wick P, Petri-Fink A. ACS Nano, 2017, 11(8): 7615.

[27]

Barosova H, Maione A G, Septiadi D, Sharma M, Haeni L, Balog S, O’Connell O, Jackson G R, Brown D, Clippinger A J, Hayden P, Petri-Fink A, Stone V, Rothen-Rutishauser B. ACS Nano, 2020, 14(4): 3941.

[28]

Shang Y, Chen R, Bai R, Tu J, Tian L. NanoImpact, 2021, 22: 100322.

[29]

Schroeter J D, Kimbell J S, Bonner A M, Roberts K C, Andersen M E, Dorman D C. Toxicol. Sci., 200, 90(1): 198.

[30]

Overton J H, Kimbell J S, Miller F J. Toxicol. Sci., 2001, 64(1): 122.

[31]

Srinivasan B, Kolli A R, Esch M B, Abaci H E, Shuler M L, Hickman J J. J. Lab Autom., 2015, 20(2): 107.

[32]

Öhlinger K, Kolesnik T, Meindl C. Toxicol. in Vitro, 2019, 60: 369.

[33]

Buron G, Hacquemand R, Pourié G, Brand G. Neurotoxicology, 2009, 30(1): 114.

[34]

Sies H, Berndt C, Jones D P. Annu. Rev. Biochem., 2017, 86: 715.

[35]

Hong Z, Guo Z, Zhang R, Xu J, Dong W, Zhuang G. J. Exp. Med., 201, 239(2): 117.

[36]

Chen X Y, Liu S, Zhang W, Wu C Y, Liu H C, Zhang F, Lu Z B, Ding W J. Biochem. Biophys. Res. Commun., 2018, 505(4): 1154.

[37]

Yang L, Liu G, Lin Z. Environ Toxicol., 201, 31(8): 923.

[38]

Onishi T, Honda A, Tanaka M, Chowdhury P H, Okano H, Okuda T, Shishido D, Terui Y, Hasegawa S, Kameda T, Tohno S, Hayashi M, Nishita-Hara C, Hara K, Inoue K, Yasuda M, Hirano S, Takano H. Environ. Pollut., 2018, 242: 1693.

[39]

Moncayo-Nieto O L, Wilkinson T S, Brittan M, McHugh B J, Jones R O, Conway Morris A, Walker W S, Davidson D J, Simpson A J. BMJ Open Respir. Res., 2014, 11: 000046.

[40]

Ueha R, Ueha S, Kondo K, Kikuta S, Yamasoba T. Front. Aging Neurosci., 2018, 10: 183.

[41]

Glezer I, Malnic B. Handb. Clin. Neurol., 2019, 164: 67.

[42]

Zufall F, Munger S D. Trends in Neuro., 2001, 24(4): 191.

[43]

McIntyre J C, Bose S C, Stromberg A J. Chem. Senses., 2008, 33(9): 825.

[44]

Munger S D, Leinders-Zufall T, Zufall F. Annu. Rev. Physiol., 2009, 71: 115.

[45]

Mercure M Z, Ginnan R, Singer H A. Am. J. Physiology-Cell Physiology, 2008, 294(6): C1465.

[46]

Fukuoka A, Matsushita K, Morikawa T, Takano H, Yoshimoto T. Clin. Exp. Allergy., 2015, 46: 142.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/