Chalcogen Effect of Atom Substitution on the Properties of Tris(2,4,6-trichlorophenyl)methyl(TTM) Radical

Yiming Yang , Lili Qiu , Xueliang Shi

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (2) : 197 -201.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (2) : 197 -201. DOI: 10.1007/s40242-023-3008-2
Article

Chalcogen Effect of Atom Substitution on the Properties of Tris(2,4,6-trichlorophenyl)methyl(TTM) Radical

Author information +
History +
PDF

Abstract

Luminescent open-shell organic radicals have recently been regarded as one of the most potential materials in organic light-emitting diodes(OLEDs). Herein, we have synthesized two new organic radicals, namely tris{4-[4-(tert-butyl)phenoxy]-2,6-dichlorophenyl}methane radical(TTM-O) and tris(4-{[4-(tert-butyl)-phenyl]thio}-2,6-dichlorophenyl)methane radical(TTM-S), by the substitution of chalcogen atom elements at the para position of conventional tris(2,4,6-trichlorophenyl)methyl(TTM) radical moiety. Interestingly, both TTM-O and TTM-S exhibited significantly enhanced photostability compared with the unsubstituted TTM radical parent. Moreover, the chalcogen atom also had a crucial impact on the photoluminescence quantum yield(PLQY) of the radicals, i.e., the PLQY of TTM-S was greatly enhanced compared to TTM radical while TTM-O was nearly non-emissive. Particularly, TTM-S showed intense PLQY of 37.54% and 185-fold longer photostability than that in cyclohexane solution of TTM.

Keywords

Luminescent organic radical / Chalcogen atom effect / Photoluminescence quantum yield(PLQY) / Photostability / Electron paramagnetic resonance(EPR)

Cite this article

Download citation ▾
Yiming Yang, Lili Qiu, Xueliang Shi. Chalcogen Effect of Atom Substitution on the Properties of Tris(2,4,6-trichlorophenyl)methyl(TTM) Radical. Chemical Research in Chinese Universities, 2023, 39(2): 197-201 DOI:10.1007/s40242-023-3008-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tang C W, VanSlyke S A. Appl. Phys. Lett., 1987, 51: 913.

[2]

Ma Y G, Zhang H Y, Shen J C, Che C M. Synthetic Met., 1998, 94: 245.

[3]

Callan J F, Prasanna de Silva A, Magri D C. Tetrahedron Lett., 2005, 61: 8551.

[4]

Burrezo P M, Jiménez V G, Blasi D, Ratera I, Campaña A G, Veciana J. Angew. Chem. Int. Ed., 2019, 58: 16282.

[5]

Chen J F, Tian G Q, Zhang N, Wang N, Yin X D, Chen P K. Org. Lett., 2022, 24: 1935.

[6]

Velasco D, Castellanos S, López M, López-Calahorra F, Brillas E, Juliá L. J. Org. Chem., 2007, 72: 7523.

[7]

Heckmann A, Lambert C. J. Am. Chem. Soc., 2007, 129: 5515.

[8]

Lannes A, Intissar M, Suffren Y, Reber C, Luneau D. Inorg. Chem., 2014, 53: 9548.

[9]

Tretyakov E V, Plyusnin V F, Suvorova A O, Larionov S V, Popov S A, Antonova O V, Zueva E M, Stass D V, Bogomyakov A S, Romanenko G V, Ovcharenko V I. J. Lumin., 2014, 148: 33.

[10]

Müllegger S, Rashidi M, Fattinger M, Koch R. J. Phys. Chem. C, 2013, 117: 5718.

[11]

Mao L J, Zhou M F, Shi X L, Yang H B. Chinese Chem. Lett., 2021, 32: 3331.

[12]

Zhou M F, Mao L J, Niu Y F, Zhao X L, Shi X L, Yang H B. Chinese Chem. Lett., 2022, 33: 1870.

[13]

Peng Q M, Obolda A, Zhang M, Li F. Angew. Chem. Int. Ed., 2015, 54: 7091.

[14]

Obolda A, Ai X, Zhang M, Li F. ACS Appl. Mater. Interfaces, 201, 8: 35472.

[15]

Ai X, Evans E W, Dong S Z, Gillett A J, Guo H Q, Chen Y X, Hele T J H, Friend R H, Li F. Nature, 2018, 563: 536.

[16]

Guo H Q, Peng Q M, Chen X K, Gu Q Y, Dong S Z, Evans E W, Gillett A J, Ai X, Zhang M, Credgington D, Coropceanu V, Frieng R H, Brédas J L, Li F. Nat. Mater., 2019, 18: 977.

[17]

Abdurahman A, Hele T J H, Gu Q Y, Zhang J B, Peng Q M, Zhang M, Friend R H, Li F, Evans E W. Nat. Mater., 2020, 19: 1224.

[18]

Fox M A, Gaillard E, Chen C C. J. Am. Chem. Soc., 1987, 109: 7088.

[19]

Heckmann A, Lambert C, Goebel M, Wortmann R. Angew. Chem. Int. Ed., 2004, 43: 5851.

[20]

Dong S Z, Obolda A, Peng Q, Zhang Y D, Marder S, Li F. Mater. Chem. Front., 2017, 1: 2132.

[21]

Dong S Z, Wu W, Guo H Q, Yan W F, Zhang M, Li F. Phys. Chem. Chem. Phys., 2018, 20: 18657.

[22]

Cui Z Y, Abdurahman A, Ai X, Li F. CCS Chem., 2020, 2: 1129.

[23]

Gamero V, Velasco D, Latorre S, López-Calahorra F, Brillas E, Juliá L. Tetrahedron Lett., 200, 47: 2305.

[24]

Velasco D, Castellanos S, López M, López-Calahorra F, Brillas E, Juliá L. J. Org. Chem., 2007, 72: 7523.

[25]

Hattori Y, Kusamoto T, Nishihara H. Angew. Chem. Int. Ed., 2014, 53: 11845.

[26]

Hattori Y, Kusamoto T, Nishihara H. Angew. Chem. Int. Ed., 2015, 54: 3731.

[27]

Kimura S, Tanushi A, Kusamoto T, Kochi S, Sato T, Nishihara H. Chem. Sci., 2018, 9: 1996.

[28]

Kimura S, Uejima M, Ota W, Sato T, Kusaka S, Matsuda R, Nishihara H, Kusamoto T. J. Am. Chem. Soc., 2021, 143: 4329.

[29]

Kimura S, Uchida H, Kusamoto T, Nishihara H. Dalton Trans., 2019, 48: 7090.

[30]

Kimura S, Matsuoka R, Kimura S, Nishihara H, Kusamoto T. J. Am. Chem. Soc., 2021, 143: 5610.

[31]

Matsuoka R, Kimura S, Kusamoto T. ChemPhotoChem, 2021, 5: 669.

[32]

Ai X, Chen Y X, Feng Y T, Li F. Angew. Chem. Int. Ed., 2018, 57: 2869.

[33]

Fajarí L, Papoular R, Reig M, Brillas E, Jorda J L, Vallcorba O, Rius J, Velasco D, Juliá L. J. Org. Chem., 2014, 79: 1771.

[34]

Castellanos S, Gaidelis V, Jankauskas V, Grazulevicius J V, Brillas E, López-Calahorra F, Juliá L, Velasco D. Chem. Commun., 2010, 46: 5130.

[35]

Reig M, Gozálvez C, Jankauskas V, Gaidelis V, Grazulevicius J V, Fajarí L, Juliá L, Velasco D. Chem. Eur. J., 201, 22: 18551.

[36]

Mesa J A, Palenzuela A V, Brillas E, Coll J, Torres J L, Juliá L. J. Org. Chem., 2012, 77: 1081.

[37]

Chen Z W, Li F. Chem. Res. Chinese Universities, 2022, 38(3): 798.

[38]

Abdurahman A, Chen Y X, Ai X, Ablikim O, Gao Y, Dong S Z, Li B, Yang B, Zhang M, Li F. J. Mater. Chem. C, 2018, 6: 11248.

[39]

Zhao Y H, Abdurahman A, Zhang Y M, Zheng P, Zhang M, Li F. CCS Chem., 2021, 3: 938.

[40]

Cui X, Lu G H, Dong S Z, Li S L, Xiao Y F, Zhang J F, Liu Y H, Meng X M, Li F, Lee C S. Mater. Horiz., 2021, 8: 571.

[41]

Obolda A, Zhang M, Li F. Chinese. Chem. Lett., 201, 27: 1345.

[42]

Oyama T, Yang Y S, Matsuoa K, Yasuda T. Chem. Commun., 2017, 53: 3814.

[43]

Planells M, Schroeder B C, McCulloch I. Macromolecules, 2014, 47: 5889.

[44]

Ma L Z, Wang S, Li Y, Shi Q Q, Xie W B, Chen H, Wang X, Zhu W Y, Jiang L, Chen R F, Peng Q, Huang H. CCS Chem., 2022, 4: 3669.

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/