Spatial Correlation in Typical Binary Polycondensation Systems: An Essential Extension of the Kirkwood-Buff Theory

Fang Gu , Jiangtao Li , Xiaozhong Hong , Haijun Wang

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 985 -991.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 985 -991. DOI: 10.1007/s40242-023-3005-5
Article

Spatial Correlation in Typical Binary Polycondensation Systems: An Essential Extension of the Kirkwood-Buff Theory

Author information +
History +
PDF

Abstract

We present the isothermal susceptibility(χ T) for the typical binary polycondensation system of A f-B g type, and relate χ T to the weight-average degree of polymerization in terms of the Kirkwood-Buff(KB) theory. The investigation is based on a new expression of χ T for mixtures, which is still expressed by the KB integrals(KBIs) but endowed with an explicit physical interpretation. For polymerization systems, it is proposed that the KBIs can be further decomposed according to whether there exists a bond between particles when conversions (extents of reaction) of functional groups are incorporated into the KBIs. In this way, χ T is directly decomposed into its relevant components as well. This is especially useful to reveal the relationship between local structures and average properties of various polymerization systems. As a consequence, the effect of polymerization on χ T is greatly simplified in comparison with the free energy route. Therefore, we have provided a very simple method to carry out some thermodynamic properties of polymerization systems.

Keywords

Isothermal compressibility / Polycondensation / Kirkwood-Buff theory / Radial distribution function / Spatial correlation

Cite this article

Download citation ▾
Fang Gu, Jiangtao Li, Xiaozhong Hong, Haijun Wang. Spatial Correlation in Typical Binary Polycondensation Systems: An Essential Extension of the Kirkwood-Buff Theory. Chemical Research in Chinese Universities, 2023, 39(6): 985-991 DOI:10.1007/s40242-023-3005-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allcock H R, Lampe F W, Mark J E. Contemporary Polymer Chemistry, 2004 3rd Ed. New Jersey: Pearson Education Inc.

[2]

Rubinstein M, Colby R. Polymer Physics, 2003, New York: Oxford University Press.

[3]

de Gennes P G. Scaling Concepts in Polymer Physics, 1979, New York: Cornell University Press

[4]

Flory P J. Principles of Polymer Chemistry, 1953, New York: Cornell University Press

[5]

Stockmayer W H. J. Chem. Phys., 1943, 11: 45.

[6]

Kirkwood J G, Buff F P. J. Chem. Phys., 1951, 19: 774.

[7]

Matteoli E, Mansoori G A. Fluctuation Theory of Mixtures, 1990 Eds. New York: Taylor & Francis

[8]

Ben-Naim A. Molecular Theory of Solutions, 2006, New York: Oxford University Press.

[9]

Ruckenstein E, Shulgi I L. Thermodynamics of Solutions: from Gases to Pharmaceutics to Proteins, 2009, New York: Springer

[10]

Ben-Naim A. J. Chem. Phys., 1977, 67: 4884.

[11]

Ploetz E A, Smith P E. Adv. Chem. Phys., 2013, 153: 311.

[12]

Lepori L, Matteoli E. J. Phys. Chem., 1988, 92: 6997.

[13]

Matteoli E. J. Phys. Chem. B, 1997, 101: 9800.

[14]

Newman K E. Chem. Soc. Rev., 1994, 23: 31.

[15]

Ben-Naim A. J. Chem. Phys., 2008, 128: 084510.

[16]

Ben-Naim A, Santos A. J. Chem. Phys., 2009, 131: 164512.

[17]

Ben-Naim A. J. Chem. Phys., 2008, 128: 234501.

[18]

Ben-Naim A. J. Chem. Phys., 2012, 137: 235102.

[19]

Ben-Naim A. J. Chem. Phys., 2013, 138: 224906.

[20]

Shulgin I L, Ruckenstein E. J. Phys. Chem. B, 200, 110: 12707.

[21]

Chitra R, Smith P E. J. Phys. Chem. B, 2002, 106: 1491.

[22]

Smith P E. Biophys. J., 200, 91: 849.

[23]

Kang M, Smith P E. J. Chem. Phys., 2008, 128: 244511.

[24]

Gee M B, Smith P E. J. Chem. Phys., 2009, 131: 165101.

[25]

Jiao Y, Smith P E. J. Chem. Phys., 2011, 135: 014502.

[26]

Ploetz E A, Smith P E. J. Chem. Phys., 2011, 135: 044506.

[27]

Ploetz E A, Bentenitis N, Smith P E. J. Chem. Phys., 2010, 132: 164501.

[28]

Perera A, Sokoli F, Almásy L, Koga Y. J. Chem. Phys., 200, 124: 124515.

[29]

Ben-Naim A, Navarro A M, Leal J M. Phys. Chem. Chem. Phys., 2008, 10: 2451.

[30]

Ellegaard M D, Abildskov J, O’Connell J P. Fluid Phase Equilibria, 2011, 302: 93.

[31]

Kruger P, Schnell S K, Bedeaux D, Kjelstrup S, Vlugt T J H, Simon J-M. J. Phys. Chem. Lett., 2013, 4: 235.

[32]

Tang A C. The Statistical Theory of Polymeric Reactions, 1985, Beijing: Science Press

[33]

Spouge J L. J. Stat. Phys., 198, 43: 143.

[34]

Tanaka F, Ishida M. Macromolecules, 1999, 32: 1271.

[35]

Tanaka F. Polymer Physics, 2011, New York: Cambridge University Press.

[36]

Li Z S, Ba X W, Sun C C, Tang X Y, Tang A C. Macromolecules, 1991, 24: 3696.

[37]

Thamm M V, Erukhimovivh I Y. J. Chem. Phys., 2003, 119: 2720.

[38]

Hansen J P, McDonald I R. Theory of Simple Liquids: with Applications to Soft Matter, 2013 4th Ed. New York: Academic Press

[39]

Santos A. A Concise Course on the Theory of Classical Liquids, 2016, Heidelberg: Springer.

[40]

Ben-Naim A. J. Chem. Phys., 1975, 63: 2064.

[41]

Carnahan N F, Starling K E. J. Chem. Phys., 1969, 51: 635.

[42]

Chapman W G, Gubbins K E, Jackson G, Radosz M. Ind. Eng. Chem. Res., 1990, 29: 1709.

[43]

Huang S H, Radosz M. Ind. Eng. Chem. Res., 1991, 30: 1994.

[44]

Semenov A N, Rubinstein M. Macromolecules, 1998, 31: 1373.

[45]

Bianchi E, Tartaglia P, Zaccarelli E, Sciortino F. J. Chem. Phys., 2008, 128: 144504.

[46]

Zhao Z F, Wang H J. Chem. J. Chinese Universities, 2008, 29(4): 805.

[47]

Wertheim M S. J. Stat. Phys., 1984, 35: 19.

[48]

Wertheim M S. J. Stat. Phys., 1984, 35: 35.

[49]

Wertheim M S. J. Stat. Phys., 198, 42: 459.

[50]

Wertheim M S. J. Stat. Phys., 198, 42: 477.

[51]

Miyaji M, Radola B, Simon J-M, Krüger P. J. Chem. Phys., 2021, 154: 164506.

[52]

Krüger P. Phys. Rev. E, 2021, 103: L061301.

[53]

Shimizu S, Matubayasi N. Phys. Chem. Chem. Phys., 2020, 22: 28304.

[54]

Venetsanos F, Anogiannakis S D, Theodorou D N. Macromolecules, 2022, 55: 4852.

[55]

Tang H, Cai J, Zhu C Y, Chen G J, Wang X H, Sun C Y. J. Mol. Liq., 2022, 367: 120382.

[56]

Simon J-M, Krüger P, Schnell S K, Vlugt T J H, Kjelstrup S, Bedeaux D. J. Chem. Phys., 2022, 157: 130901.

[57]

Zhao Z F, Wang H J, Ba X W. J. Chem. Phys., 2009, 131: 074101.

[58]

Liu S J, Li J T, Gu F, Wang H J. Chin. J. Chem. Phys., 2019, 32: 379.

[59]

Wang H J, Hong X Z, Ba X W. Chem. Phys. Lett., 2005, 413: 221.

[60]

Wang H J, Hong X Z, Ba X W. Macromolecules, 2007, 40: 5593.

AI Summary AI Mindmap
PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/