Stable Near-infrared-emitting Radical Nanoparticles for Fluorescence Imaging

Xinru Li , Wenjia Tan , Xuemei Bai , Feng Li

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (2) : 192 -196.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (2) : 192 -196. DOI: 10.1007/s40242-023-2365-1
Article

Stable Near-infrared-emitting Radical Nanoparticles for Fluorescence Imaging

Author information +
History +
PDF

Abstract

Stable neutral luminescent radicals with unpaired electrons exhibit unique spin-allowed doublet-doublet transitions, which has attracted significant attention. Although they are pure organic molecules without metal ions thus thought to have low biological toxicity, the application of luminescent radicals to bioimaging has rarely been reported. Here, a stable radical with efficient near-infrared(NIR) emission and good photostability was designed and synthesized. After being wrapped into nanoparticles, it was applied to cell fluorescence imaging. The cytotoxicity experiments suggested that the nanoparticles have remarkable biocompatibility and excellent stability. An NIR fluorescent signal was successfully observed in the cytoplasm of HCT116 cells. The experimental results gave the first example of NIR emitting radical nanoparticles for cell fluorescence imaging and proved the feasibility of the application of luminescent radicals to fluorescence imaging.

Keywords

Fluorescence imaging / Near-infrared emission / Radical / Luminescent radical / Doublet emission

Cite this article

Download citation ▾
Xinru Li, Wenjia Tan, Xuemei Bai, Feng Li. Stable Near-infrared-emitting Radical Nanoparticles for Fluorescence Imaging. Chemical Research in Chinese Universities, 2023, 39(2): 192-196 DOI:10.1007/s40242-023-2365-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chalfie M, Tu Y, Euskirchen G, Ward W W, Prasher D C. Science, 1994, 263(5148): 802.

[2]

Li K, Liu B. Chem. Soc. Rev., 2014, 43(18): 6570.

[3]

Lukinavičius G, Reymond L, Umezawa K, Sallin O, D’Este E, Göttfert F, Ta H, Hell S W, Urano Y, Johnsson K. J. Am. Chem. Soc., 201, 138(30): 9365.

[4]

Gan S, Zhou J, Smith T A, Su H F, Luo W W, Hong Y N, Zhao Z J, Tang B Z. Mater. Chem. Front., 2017, 1(12): 2554.

[5]

Cosco E D, Spearman A L, Ramakrishnan S, Lingg J G P, Saccomano M, Pengshung M, Arús B A, Wong K C Y, Glasl S, Ntziachristos V, Warmer M, McLaughlin R R, Bruns O T, Sletten E M. Nat. Chem., 2020, 12(12): 1123.

[6]

Zhao Q L, Li K, Chen S J, Qin A J, Ding D, Zhang S, Liu Y, Liu B, Sun J Z, Tang B Z. Journal of Materials Chemistry, 2012, 22(30): 15128.

[7]

Zhou H, Zeng X D, Li A G, Zhou W Y, Tang L, Hu W B, Fan Q L, Meng X L, Deng H, Duan L, Li Y Q, Deng Z X, Hong X C, Xiao Y L. Nat. Commun., 2020, 11(1): 6183.

[8]

Zhang L, Wang J L, Ba X X, Hua S Y, Jiang P, Jiang F L, Liu Y. ACS Appl. Mater. Interfaces, 2021, 13(7): 7945.

[9]

Wu X, Wang X X, Li Y, Kong F P, Xu K H, Li L, Tang B. Anal. Chem., 2022, 94(11): 4881.

[10]

Wang D, Lee M M S, Shan G G, Kwok R T K, Lam J W Y, Su H F, Cai Y C, Tang B Z. Adv. Mater., 2018, 30(39): 1802105.

[11]

Li X Q, Pan Y T, Chen H, Duan Y K, Zhou S W, Wu W B, Wang S W, Liu B. Anal. Chem., 2020, 92(8): 5772.

[12]

Yang L, Chen Q X, Wan Y P, Gan S L, Li S L, Lee C S, Jiang Y, Zhang H T, Sun H Y. ChemComm., 2022, 58(67): 9425.

[13]

Fan X X, Li Y R, Feng Z, Chen G Q, Zhou J, He M B, Wu L, Li S L, Qian J, Lin H. Adv. Sci., 2021, 8(9): 2003972.

[14]

Armet O, Veciana J, Rovira C, Riera J, Castaner J, Molins E, Rius J, Miravitlles C, Olivella S, Brichfeus J. J. Phys. Chem. C, 1987, 91(22): 5608.

[15]

Heckmann A, Lambert C, Goebel M, Wortmann R. Angew. Chem. Int. Ed., 2004, 43(43): 5851.

[16]

Hicks R G. Org. Biomol. Chem., 2007, 5(9): 1321.

[17]

Velasco D, Castellanos S, López M, López-Calahorra F, Brillas E, Juliá L. J. Org. Chem., 2007, 72(20): 7523.

[18]

Hattori Y, Kusamoto T, Nishihara H. Angew. Chem. Int. Ed., 2014, 53(44): 11845.

[19]

Dong S Z, Obolda A, Peng Q M, Zhang Y D, Marder S, Li F. Mater. Chem. Front., 2017, 1(10): 2132.

[20]

Ai X, Chen Y X, Feng Y T, Li F. Angew. Chem. Int. Ed., 2018, 57(11): 2869.

[21]

Cui Z Y, Abdurahman A, Ai X, Li F. CCS Chemistry, 2020, 2(4): 1129.

[22]

Namai H, Ikeda H, Hoshi Y, Kato N, Morishita Y, Mizuno K. J. Am. Chem. Soc., 2007, 129(29): 9032.

[23]

Peng Q M, Obolda A, Zhang M, Li F. Angew. Chem. Int. Ed., 2015, 54(24): 7091.

[24]

Ai X, Evans E W, Dong S Z, Gillett A J, Guo H Q, Chen Y X, Hele T J H, Friend R H, Li F. Nature, 2018, 563(7732): 536.

[25]

Guo H Q, Peng Q M, Chen X K, Gu Q Y, Dong S Z, Evans E W, Gillett A J, Ai X, Zhang M, Credgington D, Coropceanu V, Friend R H, Brédas JL, Li F. Nat. Mater., 2019, 18(9): 977.

[26]

Abdurahman A, Hele T J H, Gu Q Y, Zhang J B, Peng Q M, Zhang M, Friend R H, Li F, Evans E W. Nat. Mater., 2020, 19(11): 1224.

[27]

Qu Y Y, Li Y C, Tan X L, Zhai W X, Han G, Hou J L, Liu G Q, Song Y G, Liu Y P. Chem. Eur. J., 2019, 25(33): 7888.

[28]

Samouilov A, Ahmad R, Boslett J, Liu X P, Petryakov S, Zweier J L. Magnetic Resonance in Medicine, 2019, 82(2): 842.

[29]

Cui X, Lu G H, Dong S Z, Li S L, Xiao Y F, Zhang J F, Liu Y H, Meng X M, Li F, Lee C S. Mater. Horizons., 2021, 8(2): 571.

[30]

Bai X M, Tan W J, Abdurahman A, Li X R, Li F. Dyes Pigm., 2022, 202: 110260.

[31]

Zheng L H, Zhu W C, Zhou Z K, Liu K, Gao M, Tang B Z. Mater. Horizons., 2021, 8(11): 3082.

AI Summary AI Mindmap
PDF

174

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/