Effects of Electron Donating Ability of Substituents and Molecular Conjugation on the Electronic Structures of Organic Radicals

Pengyuan Li , Lu Feng , Guangyue Li , Fuquan Bai

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (2) : 202 -207.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (2) : 202 -207. DOI: 10.1007/s40242-023-2364-2
Article

Effects of Electron Donating Ability of Substituents and Molecular Conjugation on the Electronic Structures of Organic Radicals

Author information +
History +
PDF

Abstract

The geometries and electronic structures of a series of electron donor-acceptor radical molecules have been studied theoretically. The computational results show that the introduction of substituents with strong electron donating ability into tri-(2,4,6-trichlorophenyl) methyl(TTM) radicals enables the radical molecules to form the non-Aufbau electronic structure. The difficulty of forming the non-Aufbau electronic structure decreases with the enhancement of the electron donating ability of the substituent, but the expansion of the molecular conjugated system is not conducive to the formation. The hybridization of different fragments in molecular orbitals results in the disproportionation of orbital energy level and forms a staggered energy level structure. The electronic structure of radical molecules can be adjusted by substituents and molecular skeleton profoundly, which is a very effective means for molecular design.

Keywords

Radical emitter / Non-Aufbau electronic structure / Molecular orbital characteristics / Density functional theory and time-dependent density functional theory(DFT and TDDFT)

Cite this article

Download citation ▾
Pengyuan Li, Lu Feng, Guangyue Li, Fuquan Bai. Effects of Electron Donating Ability of Substituents and Molecular Conjugation on the Electronic Structures of Organic Radicals. Chemical Research in Chinese Universities, 2023, 39(2): 202-207 DOI:10.1007/s40242-023-2364-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lee S M, Kwon J H, Kwon S, Choi K C. IEEE T. Electron. Dev., 2017, 64: 1922.

[2]

Xu R P, Li Y Q, Tang J X. J. Mater. Chem. C, 201, 4: 9116.

[3]

Bai F-Q, Zhou X, Xia B-H, Liu T, Zhang J-P, Zhang H-X. J. Orgamomet. Chem., 2009, 694: 1848.

[4]

Kim E, Park J, Jun M, Shin H, Baek J, Kim T, Kim S, Lee J, Ahn H, Sun J. Sci. Adv., 2022, 8: eabq1641.

[5]

Xiang H, Wang R, Chen J, Li F, Zeng H. Light Sci. Appl., 2021, 10:Article nuber:206

[6]

Yang J G, Song X F, Cheng G, Wu S P, Feng X Y, Cui G L, To W P, Chang X Y, Chen Y, Che C M. ACS Appl. Mater. Inter., 2022, 14: 13539.

[7]

Xiao S, Qiao X F, Lin C W, Chen L J, Guo R D, Lu P, Wang L, Ma D G. Adv. Opt. Mater., 2022, 10: 2102333.

[8]

Han M M, Zhu Z, Ouyang M T, Liu Y, Shu X W. Adv. Funct. Mater., 2021, 31: 2104044.

[9]

Zhong Z T, Zhu X Y, Wang X H, Zheng Y, Geng S N, Zhou Z K, Feng X J, Zhao Z J, Lu H. Adv. Funct. Mater., 2022 2112969.

[10]

Zhuo M P, Wang X D, Liao L S. Small Science, 2022, 2: 2200029.

[11]

Peng Q M, Obolda A, Zhang M, Li F. Angew. Chem. Int. Ed., 2015, 127: 7197.

[12]

Ai X, Evans E W, Dong S Z, Gillett A J, Guo H Q, Chen Y X, Hele T J, Friend R H, Li F. Nature, 2018, 563: 536.

[13]

Cui Z Y, Abdurahman A, Ai X, Li F. CCS Chem., 2020, 2: 1129.

[14]

Forrester A R, Hay M K, Thomson R H. Organic Chemistry of Stable Free Radicals, 1968, New York: Academic Press

[15]

Hicks R G. Org. Biomol. Chem., 2007, 5: 1321.

[16]

Hicks R. Stable Radicals: Fundamentals and Applied Aspects of Oddelectron Compounds, 2011, Hoboken: John Wiley & Sons

[17]

Kato K, Osuka A. Angew. Chem. Int. Ed., 2019, 131: 9074.

[18]

Ballester M, Riera-Figueras J, Rodríguez-Siurana A. Tetrahedron. Lett., 1970, 11: 3615.

[19]

Armet O, Veciana J, Rovira C, Riera J, Castaner J, Molins E, Rius J, Miravitlles C, Olivella S, Brichfeus J. J. Phys. Chem., 1987, 91: 5608.

[20]

Hisamune Y, Nishimura K, Isakari K, Ishida M, Mori S, Karasawa S, Kato T, Lee S, Kim D, Furuta H. Angew. Chem. Int. Ed., 2015, 54: 7323.

[21]

Guo H Q, Peng Q M, Chen X K, Gu Q Y, Dong S Z, Evans E W, Gillett A J, Ai X, Zhang M, Credgington D, Coropceanu V, Friend R H, Brédas J L, Li F. Nat. Mater., 2019, 18: 977.

[22]

Yu S Q, Du Y, Niu X H, Li G M, Zhu D, Yu Q, Zou G Z, Ju H X. Nat. Commun., 2022, 13: 7302.

[23]

Duan C B, Han C M, Du R M, Wei Y, Xu H. Adv. Opt. Mater., 2018, 6: 1800437.

[24]

Shaw M H, Twilton J, Macmillan D W C. J. Org. Chem., 201, 8116: 6898.

[25]

Zhao Y, Truhlar D G. Theor. Chem. Acc., 2008, 120: 215.

[26]

Schaefer A, Horn H, Ahlrichs R. J. Chem. Phys., 1992, 97: 2571.

[27]

Schaefer A, Huber C, Ahlrichs R. J. Chem. Phys., 1994, 100: 5829.

[28]

Petersson G A, Bennett A, Tensfeldt T G, Al-Laham M A, Shirley W A, Mantzaris J. J. Chem. Phys., 1988, 89: 2193.

[29]

Petersson G A, Al-Laham M A. J. Chem. Phys., 1991, 94: 6081.

[30]

Marenich A V, Cramer C J, Truhlar D G. J. Phys. Chem. B, 2009, 113: 6378.

[31]

Lu T, Chen F. J. Comput. Chem., 2012, 33: 580.

[32]

Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X, Caricato M, Marenich A V, Bloino J, Janesko B G, Gomperts R, Mennucci B, Hratchian H P, Ortiz J V, Izmaylov A F, Sonnenberg J L, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V G, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery J A Jr, Peralta J E, Ogliaro F, Bearpark M J, Heyd J J, Brothers E N, Kudin K N, Staroverov V N, Keith T A, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant J C, Iyengar S S, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma K, Farkas O, Foresman J B, Fox D J. Gaussian 16, 2016, Wallingford CT: Gaussian, Inc.

AI Summary AI Mindmap
PDF

196

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/