Progress of Indeno-type Organic Diradicaloids

Jiaxiang Guo , Xinyu Tian , Yue Wang , Chuandong Dou

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (2) : 161 -169.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (2) : 161 -169. DOI: 10.1007/s40242-023-2363-3
Review

Progress of Indeno-type Organic Diradicaloids

Author information +
History +
PDF

Abstract

Organic diradicaloids have unusual open-shell nature and properties and are promising materials for organic electronics, spintronics, energy storage and nonlinear optics. In this review, we focus on indeno-type organic diradicaloids and summarize their molecular design and synthesis, as well as topological structures, open-shell characters and diradical properties. The molecular systems are classified into indenofluorenes and diindenoacenes, indeno-based molecules with one-dimensional, two-dimensional and unique topological structures, and heterocyclic indeno-based molecules. By constructing these various topological π-skeletons with tunable conjugation modes and variation of atomic composition, their key open-shell parameters, such as diradical characters and singlet-triplet energy gaps, along with the optical, electronic and magnetic properties, as well as stabilities are efficiently modulated. More attention may be paid to accurate computational analysis, rational design and synthesis, and novel functions of indeno-type diradicaloids, which will promote the development of radical chemistry and materials.

Keywords

Polycyclic hydrocarbon / Open shell / Quinoidal conjugation / Diradical character / Antiaromaticity

Cite this article

Download citation ▾
Jiaxiang Guo, Xinyu Tian, Yue Wang, Chuandong Dou. Progress of Indeno-type Organic Diradicaloids. Chemical Research in Chinese Universities, 2023, 39(2): 161-169 DOI:10.1007/s40242-023-2363-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Narita A, Wang X-Y, Feng X, Müllen K. Chem. Soc. Rev., 2015, 44(18): 6616.

[2]

Ito H, Segawa Y, Murakami K, Itami K. J. Am. Chem. Soc., 2019, 141(1): 3.

[3]

Jiang W, Li Y, Wang Z. Acc. Chem. Res., 2014, 47(10): 3135.

[4]

Stępień M, Gońka E, Żyła M, Sprutta N. Chem. Rev., 2017, 117(4): 3479.

[5]

Yuan L., Guo J., Yang Y., Ye K., Dou C., Wang Y., CCS Chem., 2022, DOI: https://doi.org/10.31635/ccschem.022.202101738

[6]

Sun W, Guo J, Fan Z, Yuan L, Ye K, Dou C, Wang Y. Angew. Chem. Int. Ed., 2022, 61(40): e202209271.

[7]

Abe M. Chem. Rev., 2013, 113(9): 7011.

[8]

Kubo T. Chem. Rec., 2015, 15(1): 218.

[9]

Dressler J J, Haley M M. J. Phys. Org. Chem., 2020, 33(11): e4114.

[10]

Zeng W, Wu J. Chem, 2021, 7(2): 358.

[11]

Chen Z X, Li Y, Huang F. Chem, 2021, 7(2): 288.

[12]

Liu J, Feng X. Angew. Chem. Int. Ed., 2020, 59(52): 23386.

[13]

Quintero S M, Haley M M, Kertesz M, Casado J. Angew. Chem. Int. Ed., 2022, 61(44): e202209138.

[14]

Tobe Y. Chem. Rec., 2015, 15(1): 86.

[15]

Tobe Y. Top Curr. Chem.(Z), 2018, 376(2): 12.

[16]

Frederickson C K, Rose B D, Haley M M. Acc. Chem. Res., 2017, 50(4): 977.

[17]

Tschitschibabin A E. Chem. Ber., 1907, 40(2): 1810.

[18]

Montgomery L K, Huffman J C, Jurczak E A, Grendze M P. J. Am. Chem. Soc., 198, 108(19): 6004.

[19]

Chase D T, Rose B D, McClintock S P, Zakharov L N, Haley M M. Angew. Chem. Int. Ed., 2011, 50(5): 1127.

[20]

Chase D T, Fix A G, Kang S J, Rose B D, Weber C D, Zhong Y, Zakharov L N, Lonergan M C, Nuckolls C, Haley M M. J. Am. Chem. Soc., 2012, 134(25): 10349.

[21]

Chase D T, Fix A G, Rose B D, Weber C D, Nobusue S, Stockwell C E, Zakharov L N, Lonergan M C, Haley M M. Angew. Chem. Int. Ed., 2011, 50(47): 11103.

[22]

Rudebusch G E, Zafra J L, Jorner K, Fukuda K, Marshall J L, Arrechea-Marcos I, Espejo G L, Ponce Ortiz R, Gómez-García C J, Zakharov L N, Nakano M, Ottosson H, Casado J, Haley M M. Nat. Chem., 201, 8(8): 753.

[23]

Shimizu A, Tobe Y. Angew. Chem. Int. Ed., 2011, 50(30): 6906.

[24]

Fix A G, Deal P E, Vonnegut C L, Rose B D, Zakharov L N, Haley M M. Org. Lett., 2013, 15(6): 1362.

[25]

Shimizu A, Kishi R, Nakano M, Shiomi D, Sato K, Takui T, Hisaki I, Miyata M, Tobe Y. Angew. Chem. Int. Ed., 2013, 52(23): 6076.

[26]

Dressler J J, Zhou Z, Marshall J L, Kishi R, Takamuku S, Wei Z, Spisak S N, Nakano M, Petrukhina M A, Haley M M. Angew. Chem. Int. Ed., 2017, 56(48): 15363.

[27]

Rose B D, Vonnegut C L, Zakharov L N, Haley M M. Org. Lett., 2012, 14(9): 242.

[28]

Miyoshi H, Miki M, Hirano S, Shimizu A, Kishi R, Fukuda K, Shiomi D, Sato K, Takui T, Hisaki I, Nakano M, Tobe Y. J. Org. Chem., 2017, 82(3): 1380.

[29]

Barker J E, Frederickson C K, Jones M H, Zakharov L N, Haley M M. Org. Lett., 2017, 19(19): 5312.

[30]

Hacker A S, Pavano M, Wood J E, Hashimoto H, D’Ambrosio K M, Frederickson C K, Zafra J L, Gómez-García C J, Postils V, Ringer McDonald A, Casanova D, Frantz D K, Casado J. Chem. Commun., 2019, 55(94): 14186.

[31]

Majewski M A, Chmielewski P J, Chien A, Hong Y, Lis T, Witwicki M, Kim D, Zimmerman P M, Stępień M. Chem. Sci., 2019, 10(11): 3413.

[32]

Prajapati B, Dang D, Chmielewski P J, Majewski M A, Lis T, Gómez-García C J, Zimmerman P M, Stępień M. Angew. Chem. Int. Ed., 2021, 60(41): 22496.

[33]

Frederickson C K, Zakharov L N, Haley M M. J. Am. Chem. Soc., 201, 138(51): 16827.

[34]

Hayashi H, Barker J E, Cárdenas Valdivia A, Kishi R, MacMillan S N, Gómez-García C J, Miyauchi H, Nakamura Y, Nakano M, Kato S, Haley M M, Casado J. J. Am. Chem. Soc., 2020, 142(48): 20444.

[35]

Dressler J J, Cárdenas Valdivia A, Kishi R, Rudebusch G E, Ventura A M, Chastain B E, Gómez-García C J, Zakharov L N, Nakano M, Casado J, Haley M M. Chem, 2020, 6(6): 1353.

[36]

Hu P, Lee S, Herng T S, Aratani N, Gonçalves T P, Qi Q, Shi X, Yamada H, Huang K-W, Ding J, Kim D, Wu J. J. Am. Chem. Soc., 201, 138(3): 1065.

[37]

Kubo T, Yamamoto K, Nakasuji K, Takui T. Tetrahedron Lett., 2001, 42(45): 7997.

[38]

Shimizu A, Kubo T, Uruichi M, Yakushi K, Nakano M, Shiomi D, Sato K, Takui T, Hirao Y, Matsumoto K, Kurata H, Morita Y, Nakasuji K. J. Am. Chem. Soc., 2010, 132(41): 14421.

[39]

Liu J, Ma J, Zhang K, Ravat P, Machata P, Avdoshenko S, Hennersdorf F, Komber H, Pisula W, Weigand J J, Popov A A, Berger R, Müllen K, Feng X. J. Am. Chem. Soc., 2017, 139(22): 7513.

[40]

Liu J, Mishra S, Pignedoli C A, Passerone D, Urgel J I, Fabrizio A, Lohr T G, Ma J, Komber H, Baumgarten M, Corminboeuf C, Berger R, Ruffieux P, Müllen K, Fasel R, Feng X. J. Am. Chem. Soc., 2019, 141(30): 12011.

[41]

Ma J, Liu J, Baumgarten M, Fu Y, Tan Y-Z, Schellhammer K S, Ortmann F, Cuniberti G, Komber H, Berger R, Müllen K, Feng X. Angew. Chem. Int. Ed., 2017, 56(12): 3280.

[42]

Lombardi F, Lodi A, Ma J, Liu J, Slota M, Narita A, Myers W K, Müllen K, Feng X, Bogani L. Science, 2019, 366(6469): 1107.

[43]

Ma J, Zhang K, Schellhammer K S, Fu Y, Komber H, Xu C, Popov A A, Hennersdorf F, Weigand J J, Zhou S, Pisula W, Ortmann F, Berger R, Liu J, Feng X. Chem. Sci., 2019, 10(14): 4025.

[44]

Lu R, Wu S, Yang L, Gao W, Qu H, Wang X, Chen J, Tang C, Shi H, Cao X. Angew. Chem. Int. Ed., 2019, 58(23): 7600.

[45]

Guo J, Li Z, Zhang J, Li B, Liang Y, Wang Y, Xie S, Phan H, Herng T S, Ding J, Wu J, Tang B Z, Zeng Z. CCS Chem., 2022, 4(1): 95.

[46]

Han H, Zhang D, Zhu Z, Wei R, Xiao X, Wang X, Liu Y, Ma Y, Zhao D. J. Am. Chem. Soc., 2021, 143(42): 17690.

[47]

Liu C, Sandoval-Salinas M E, Hong Y, Gopalakrishna T Y, Phan H, Aratani N, Herng T S, Ding J, Yamada H, Kim D, Casanova D, Wu J. Chem, 2018, 4(7): 1586.

[48]

Lu X, Gopalakrishna T Y, Phan H, Herng T S, Jiang Q, Liu C, Li G, Ding J, Wu J. Angew. Chem. Int. Ed., 2018, 57(40): 13052.

[49]

Fu X, Zhao D. Org. Lett., 2015, 17(22): 5694.

[50]

Shi X, Chi C. Top Curr. Chem.(Z), 2017, 375(4): 68.

[51]

Gu R, Robeyns K, Van Meervelt L, Toppet S, Dehaen W. Org. Biomol. Chem., 2008, 6(14): 2484.

[52]

Luo D, Lee S, Zheng B, Sun Z, Zeng W, Huang K-W, Furukawa K, Kim D, Webster R D, Wu J. Chem. Sci., 2014, 5(12): 4944.

[53]

Wang Z, Dai Y, Ding L, Dong B, Jiang S, Wang J, Pei J. Angew. Chem. Int. Ed., 2021, 60(9): 4594.

[54]

Shi X, Quintero E, Lee S, Jing L, Herng T S, Zheng B, Huang K-W, López Navarrete J T, Ding J, Kim D, Casado J, Chi C. Chem. Sci., 201, 7(5): 3036.

[55]

Dressler J J, Teraoka M, Espejo G L, Kishi R, Takamuku S, Gómez-García C J, Zakharov L N, Nakano M, Casado J, Haley M M. Nat. Chem., 2018, 10(11): 1134.

[56]

Barker J E, Price T W, Karas L J, Kishi R, MacMillan S N, Zakharov L N, Gómez-García C J, Wu J I, Nakano M, Haley M M. Angew. Chem. Int. Ed., 2021, 60(41): 22385.

[57]

Ma L, Wang S, Li Y, Shi Q, Xie W, Chen H, Wang X, Zhu W, Jiang L, Chen R, Peng Q, Huang H. CCS Chem., 2022, 4(12): 3669.

[58]

Wang J, Ruan H, Hu Z, Wang W, Zhao Y, Wang X. Chem. Eur. J., 2022, 28(8): e202103897.

[59]

Feng Z, Tang S, Su Y, Wang X. Chem. Soc. Rev., 2022, 51(14): 5930.

[60]

Su Y, Kinjo R. Coord. Chem. Rev., 2017, 352: 346.

[61]

Kaim W, Hosmane N S, Záliš S, Maguire J A, Lipscomb W N. Angew. Chem. Int. Ed., 2009, 48(28): 5082.

[62]

Maiti A, Zhang F, Krummenacher I, Bhattacharyya M, Mehta S, Moos M, Lambert C, Engels B, Mondal A, Braunschweig H, Ravat P, Jana A. J. Am. Chem. Soc., 2021, 143(10): 3687.

[63]

Kushida T, Shirai S, Ando N, Okamoto T, Ishii H, Matsui H, Yamagishi M, Uemura T, Tsurumi J, Watanabe S, Takeya J, Yamaguchi S. J. Am. Chem. Soc., 2017, 139(41): 14336.

[64]

Ito M, Shirai S, Xie Y, Kushida T, Ando N, Soutome H, Fujimoto K J, Yanai T, Tabata K, Miyata Y, Kita H, Yamaguchi S. Angew. Chem. Int., 2022, 61(25): e202201965.

[65]

Saalfrank C, Fantuzzi F, Kupfer T, Ritschel B, Hammond K, Krummenacher I, Bertermann R, Wirthensohn R, Finze M, Schmid P, Engel V, Engels B, Braunschweig H. Angew. Chem. Int. Ed., 2020, 59(43): 19338.

[66]

Wang J, Cui H, Ruan H, Zhao Y, Zhao Y, Zhang L, Wang X. J. Am. Chem. Soc., 2022, 144(18): 7978.

[67]

Guo J, Yang Y, Dou C, Wang Y. J. Am. Chem. Soc., 2021, 143(43): 18272.

[68]

Tian X, Guo J, Sun W, Yuan L, Dou C, Wang Y. Chem. Eur. J., 2022, 28(17): e202200045.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/