Synthesis and Characterization of a Persistent Benzoanthracenyl Radical Derivative

Yupeng Guo , Xingye Wu , Bingxia Hou , Qin Xiang , Yong Ni , Jinling Li , Zhe Sun

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (2) : 208 -212.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (2) : 208 -212. DOI: 10.1007/s40242-023-2360-6
Article

Synthesis and Characterization of a Persistent Benzoanthracenyl Radical Derivative

Author information +
History +
PDF

Abstract

A highly persistent benzoanthracenyl radical(BAR1) protected by five substituents at strategic positions is synthesized. BAR1 exhibited half-life time of 108 h in air-saturated solution, which allowed for detailed characterization in the solution. The combined experimental and theoretical study reveals the properties associated with its asymmetric structure and spin distribution. One-electron oxidation of BAR1 afforded stable cationic species BAR1+, whose structure is unambiguously determined by the NMR spectroscopy.

Keywords

Graphene fragment / Hydrocarbon radical / Delocalization / Spin distribution / Cation

Cite this article

Download citation ▾
Yupeng Guo, Xingye Wu, Bingxia Hou, Qin Xiang, Yong Ni, Jinling Li, Zhe Sun. Synthesis and Characterization of a Persistent Benzoanthracenyl Radical Derivative. Chemical Research in Chinese Universities, 2023, 39(2): 208-212 DOI:10.1007/s40242-023-2360-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xiang Q, Sun Z. Chem. Asian J., 2022, 17: e202200251.

[2]

Kubo T. Molecules, 2019, 24: 665.

[3]

Taniguchi T. Synthesis, 2017, 49: 3511.

[4]

Chen X, Wang X, Zhou Z, Sui Y, Ma J, Wang X, Power P. Angew. Chem. Int. Ed. Engl., 2013, 125: 617.

[5]

Su Y, Wang X, Zheng X, Zhang Z, Song Y, Sui Y, Li Y, Wang X. Angew. Chem. Int. Ed. Engl., 2014, 126: 2901.

[6]

Lebedev O L, Kazarnovskii S N. Zh. Obshch. Khim., 1960, 30: 1631.

[7]

Blatter H M, Lukaszewski H. Tetrahedron Lett., 1968, 9: 2701.

[8]

Haddon R C. Nature, 1975, 256: 394.

[9]

Morita Y, Suzuki S, Fukui K, Nakazawa S, Kitagawa H, Kishida H, Okamoto H, Naito A, Sekine A, Ohashi Y, Shiro M, Sasaki K, Shiomi D, Sato K, Takui T, Nakasuji K. Nat. Mater., 2008, 7: 48.

[10]

Nishida S, Morita Y, Fukui K, Sato K, Shiomi D, Takui T, Nakasuji K. Angew. Chem. Int. Ed. Engl., 2005, 44: 7277.

[11]

Mukherjee A, Sau S C, Mandal S K. Acc. Chem. Res., 2017, 50: 1679.

[12]

Sogo P B, Nakazaki M, Calvin M. J. Chem. Phys., 1957, 26: 1343.

[13]

Reid D H. Tetrahedron, 1958, 3: 339.

[14]

Uchida K, Ito S, Nakano M, Abe M, Kubo T. J. Am. Chem. Soc., 201, 138: 2399.

[15]

Goto K, Kubo T, Yamamoto K, Nakasuji K, Sato K, Shiomi D, Takui T, Kubota M, Kobayashi T, Yakusi K, Ouyang J. J. Am. Chem. Soc., 1999, 121: 1619.

[16]

Ravat P, Blacque O, Juríček M. J. Org. Chem., 2020, 85: 92.

[17]

Ravat P, Ribar P, Rickhaus M, Häussinger D, Neuburger M, Juríček M. J. Org. Chem., 201, 81: 12303.

[18]

Xiang Q, Guo J, Xu J, Ding S, Li Z, Li G, Phan H, Gu Y, Dang Y, Xu Z, Gong Z, Hu W, Zeng Z, Wu J, Sun Z. J. Am. Chem. Soc., 2020, 142: 11022.

[19]

Xiang Q, Xu J, Guo J, Dang Y, Xu Z, Zeng Z, Sun Z. Chem.-Eur. J., 2021, 27: 8203.

[20]

Guo Y, Ding S, Zhang N, Xu Z, Wu S, Hu J, Xiang Q, Li Z, Chen X, Sato S, Wu J, Sun Z. J. Am. Chem. Soc., 2022, 144: 2095.

[21]

Lewis I C, Singer L S. Carbon, 1969, 7: 93.

[22]

Lewis I C, Singer L S. Magn. Reson. Chem., 1985, 23: 698.

[23]

Toader A M, Buta C M, Frecus B, Mischie A, Cimpoesu F. J. Phys. Chem. C, 2019, 123: 6869.

[24]

Yao Y X, Rareshide C R, Chan T L, Wang C Z, Ho K M. Nano LIFE, 2012, 2: 1240006.

[25]

Kozankiewicz B, Aloshyna M, Sienkiewicz A, Orrit M, Tamarat P, Hadad C M, Snoonian J R, Platz M S. J. Phys. Chem. A, 2000, 104: 5213.

[26]

Aloshyna M, Kozankiewicz B, Hadad C M, Snoonian J R, Platz M S. J. Phys. Chem. A, 2000, 104: 3391.

[27]

Weisman J L, Lee T J, Head-Gordon M. Spectrochim Acta, Part A, 2001, 57: 931.

[28]

Reid D. H., Sutherland R. G., J. Chem. Soc., 1963, 3295

[29]

Li Q, Liskey C W, Hartwig J F. J. Am. Chem. Soc., 2014, 136: 8755.

[30]

Murphy J M, Lawrence J D, Kawamura K, Incarvito C, Hartwig J F. J. Am. Chem. Soc., 200, 128: 13684.

[31]

Zipse H. Top. Curr. Chem., 200, 263: 163.

[32]

Hioe J, Zipse H. Org. Biomol. Chem., 2010, 8: 3609.

[33]

Small D, Zaitsev V, Jung Y, Rosokha S V, Head-Gordon M, Kochi J K. J. Am. Chem. Soc., 2004, 126: 13850.

[34]

Kubo T, Katada Y, Shimizu A, Hirao Y, Sato K, Takui T, Uruichi M, Yakushi K, Haddon R C. J. Am. Chem. Soc., 2011, 133: 14240.

[35]

Koutentis P A, Chen Y, Cao Y, Best T P, Itkis M E, Beer L, Oakley R T, Cordes A W, Brock C P, Haddon R C. J. Am. Chem. Soc., 2001, 123: 3864.

[36]

Itkis M E, Chi X, Cordes A W, Haddon R C. Science, 2002, 296: 1443.

[37]

Haddon R C, Chichester S, Stein S. J. Am. Chem. Soc., 1987, 52: 711.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/