Electronic Characteristics of Perylene Diimide Anion Radical and Dianion Films by Quantitative Doping

Yanhua Jia , Qinglin Jiang , Bohan Wang , Jiaji Yang , Jiang Zhang , Yuguang Ma

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (2) : 187 -191.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (2) : 187 -191. DOI: 10.1007/s40242-023-2350-8
Article

Electronic Characteristics of Perylene Diimide Anion Radical and Dianion Films by Quantitative Doping

Author information +
History +
PDF

Abstract

Due to their unique physicochemical properties, the anion radical and dianion of perylene diimide derivatives(PDIs) recently attracted significant attention for organic semiconductors. However, the impact of packing structure and the radical content for carrier transport in the solid state still need to be determined. Bringing the electron-withdrawing groups is an effective strategy for enabling π−π stacking distance. Here, bay-tetrachloro-substituted PDI(B-4Cl-PDI) anion radical and dianion films were fabricated quantitatively doped with N2H4·H2O. The radical contents were quantitatively calculated by absorption spectra in different doping ratios. The X-ray powder diffraction patterns showed that the anion radical presented a crystalline structure, and dianion aggregates exhibited an amorphous structure. With precise manipulation of the radical content, the anion radical aggregates and dianion aggregates showed the maximum electrical conductivity value of 0.024 and 0.0018 S/cm, respectively. The experiment results show that doping level and aggregate structure play a crucial role in electronic transport properties.

Keywords

Perylene diimide derivative(PDI) / Anion radical aggregate / Dianion aggregate / Radical content / Electronic conductivity

Cite this article

Download citation ▾
Yanhua Jia, Qinglin Jiang, Bohan Wang, Jiaji Yang, Jiang Zhang, Yuguang Ma. Electronic Characteristics of Perylene Diimide Anion Radical and Dianion Films by Quantitative Doping. Chemical Research in Chinese Universities, 2023, 39(2): 187-191 DOI:10.1007/s40242-023-2350-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jones B A, Facchetti A, Wasielewski M R, Marks T J. J. Am. Chem. Soc., 2007, 129: 15259.

[2]

Schmidt R, Oh J H, Sun Y-S, Deppisch M, Krause A-M, Radacki K, Braunschweig H, Konemann M, Erk P, Bao Z, Wurthner F. J. Am. Chem. Soc., 2009, 131: 6215.

[3]

Wang H, Yuan S, Ma D, Huang X, Meng F, Zhang X. Adv. Energy Mater., 2014, 4: 1301651.

[4]

Warczak M, Gryszel M, Jakesova M, Derek V, Glowacki E D. Chem. Commun., 2018, 54: 1960.

[5]

Kozma E, Mróz W, Villafiorita-Monteleone F, Galeotti F, Andicsová-Eckstein A, Catellani M, Botta C. RSC Adv., 201, 6: 61175.

[6]

Zhang W, Zhong S, Nian L, Chen Y, Xie Z, Liu L, Hanif M, Chen W, Ma Y. RSC Adv., 2015, 5: 39973.

[7]

Wang Z, Zheng N, Zhang W, Yan H, Xie Z, Ma Y, Huang F, Cao Y. Adv. Energy Mater., 2017, 7: 1700232.

[8]

Russ B, Robb M J, Brunetti F G, Miller P L, Perry E E, Patel S N, Ho V, Chang W B, Urban J J, Chabinyc M L, Hawker C J, Segalman R A. Adv. Mater., 2014, 26: 3473.

[9]

Jiang Q, Zhang J, Mao Z, Yao Y, Zhao D, Jia Y, Hu D, Ma Y. Adv. Mater., 2022, 34: 2108103.

[10]

Chen Z X, Li Y, Huang F. Chem, 2021, 7: 288.

[11]

Rostro L, Baradwaj A G, Boudouris B W. ACS Appl. Mater. Interfaces, 2013, 5: 9896.

[12]

Rostro L, Wong S H, Boudouris B W. Macromolecules, 2014, 47: 3713.

[13]

Joo Y, Agarkar V, Sung S H, Savoie B M, Boudouris B W. Science, 2018, 359: 1391.

[14]

Kwon T, Koo J Y, Choi H C. Angew. Chem. Int. Ed., 2020, 59: 16436.

[15]

Zhao D, Jiang Q, Jia Y, Zhou J, Zheng N, Hu D, Ma Y. Mater. Today Energy, 2021, 21: 100710.

[16]

Chen T A, Rieke R D. Synth. Met., 1993, 60: 175.

[17]

Ajayaghosh A. Chem. Soc. Rev., 2003, 32: 181.

[18]

Tam T L D, Ng C K, Lim S L, Yildirim E, Ko J, Leong W L, Yang S, Xu J. Chem. Mater., 2019, 31: 8543.

[19]

Huang L., Eedugurala N., Benasco A., Zhang S., Mayer K. S., Adams D. J., Fowler B., Lockart M. M., Saghayezhian M., Tahir H., King E. R., Morgan S., Bowman M. K., Gu X., Azoulay J. D., Adv. Funct. Mater., 2020, 1909805

[20]

Yuan D, Guo Y, Zeng Y, Fan Q, Wang J, Yi Y, Zhu X. Angew. Chem. Int. Ed., 2019, 58: 4958.

[21]

Yang K, Zhang X, Harbuzaru A, Wang L, Wang Y, Koh C, Guo H, Shi Y, Chen J, Sun H, Feng K, Delgado R M C, Woo H Y, Ortiz R P, Guo X. J. Am. Chem. Soc., 2020, 142: 4329.

[22]

Lutkenhaus J. Science, 2018, 359: 1334.

[23]

Cardona C M, Li W, Kaifer A E, Stockdale D, Bazan G C. Adv. Mater., 2011, 23: 2367.

[24]

Sworakowski J, Lipiński J, Janus K. Org. Electron., 201, 33: 300.

[25]

Renner R, Stolte M, Heitmüller J, Brixner T, Lambert C, Würthner F. Mater. Horiz., 2022, 9: 350.

[26]

Seifert S, Schmidt D, Wurthner F. Chem. Sci., 2015, 6: 1663.

[27]

Dyson F J. Phys. Rev., 1955, 98: 349.

[28]

Guy S C, Edmonds R N, Edwards P P. J. Chem. Soc., Faraday Trans. 2, 1985, 81: 937.

AI Summary AI Mindmap
PDF

184

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/