Stable Radical TEMPO Terminated Perylene Bisimide(PBI) Based Small Molecule as Cathode Interlayer for Efficient Organic Solar Cells

Ziwei Zhang , Dongdong Xia , Qian Xie , Chaowei Zhao , Jie Fang , Yonggang Wu , Weiwei Li

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (2) : 213 -218.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (2) : 213 -218. DOI: 10.1007/s40242-023-2346-4
Article

Stable Radical TEMPO Terminated Perylene Bisimide(PBI) Based Small Molecule as Cathode Interlayer for Efficient Organic Solar Cells

Author information +
History +
PDF

Abstract

By combining stable radical tetramethylpiperidine nitrogen oxide(TEMPO) as end groups and perylene bisimide(PBI) as the core, a small molecular cathode interlayer(CIL) (PBI-TEMPO) was synthesized. Detailed physical-chemical characterizations indicate that PBI-TEMPO can form smooth film, owns low unoccupied molecular orbital(LUMO) level of −3.67 eV and can reduce the work function of silver electrode. When using PBI-TEMPO as CIL in non-fullerene organic solar cells(OSCs), the PM6:BTP-4Cl based OSCs delivered high power conversion efficiencies(PCEs) up to 17.37%, higher than those using commercial PDINO CIL with PCEs of 16.95%. Further device characterizations indicate that PBI-TEMPO can facilitate more efficient exciton dissociation and reduce charge recombination, resulting in enhanced current density and fill factor. Moreover, PBI-TEMPO displays higher thermal stability than PDINO in solution. When PBI-TEMPO and PDINO solution were heated at 150 °C for 2 h and then were used as CIL in solar cells, PBI-TEMPO-based OSCs provided a PCE of 15%, while PDINO-based OSCs only showed a PCE of 10%. These results demonstrate that incorporating TEMPO into conjugated materials is a useful strategy to create new organic semiconductors for application in OSCs.

Keywords

Tetramethylpiperidine nitrogen oxide(TEMPO) / Perylene bisimide / Cathode interlayer / Organic solar cell / Power conversion efficiency

Cite this article

Download citation ▾
Ziwei Zhang, Dongdong Xia, Qian Xie, Chaowei Zhao, Jie Fang, Yonggang Wu, Weiwei Li. Stable Radical TEMPO Terminated Perylene Bisimide(PBI) Based Small Molecule as Cathode Interlayer for Efficient Organic Solar Cells. Chemical Research in Chinese Universities, 2023, 39(2): 213-218 DOI:10.1007/s40242-023-2346-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu B, Xia D, Xiao C, Yang Z, Li W. Acta Phys.-Chim. Sin., 2021, 37: 2009056.

[2]

Yan N, Zhao C, You S, Zhang Y, Li W. Chin. Chem. Lett., 2020, 31: 643.

[3]

Liu C, Xiao C, Xie C, Li W. Nano Energy, 2021, 89: 106399.

[4]

Park S, Heo S W, Lee W, Inoue D, Jiang Z, Yu K, Jinno H, Hashizume D, Sekino M, Yokota T, Fukuda K, Tajima K, Someya T. Nature, 2018, 561: 516.

[5]

Cao J, Yi L, Ding L. J. Semicond., 2022, 43: 030202.

[6]

Yuan J, Zhang Y, Zhou L, Zhang G, Yip H-L, Lau T-K, Lu X, Zhu C, Peng H, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140.

[7]

Li C, Zhou J, Song J, Xu J, Zhang H, Zhang X, Guo J, Zhu L, Wei D, Han G, Min J, Zhang Y, Xie Z, Yi Y, Yan H, Gao F, Liu F, Sun Y. Nat. Energy, 2021, 6: 605.

[8]

Zhan L, Li S, Xia X, Li Y, Lu X, Zuo L, Shi M, Chen H. Adv. Mater., 2021, 33: e2007231.

[9]

Li Y. Acc. Chem. Res., 2012, 45: 723.

[10]

Zhang G, Lin F R, Qi F, Heumuller T, Distler A, Egelhaaf H J, Li N, Chow P C Y, Brabec C J, Jen A K, Yip H L. Chem. Rev., 2022, 122: 14180.

[11]

Cui M, Li D, Du X, Li N, Rong Q, Li N, Shui L, Zhou G, Wang X, Brabec C J, Nian L. Adv. Mater., 2020, 32: e2002973.

[12]

Zhao C, Zhang Z, Han F, Xia D, Xiao C, Fang J, Zhang Y, Wu B, You S, Wu Y, Li W. Angew. Chem. Int. Ed., 2021, 60: 8526.

[13]

Wu Z, Sun C, Dong S, Jiang X F, Wu S, Wu H, Yip H L, Huang F, Cao Y. J. Am. Chem. Soc., 201, 138: 2004.

[14]

Li G, Chang W-H, Yang Y. Nat. Rev. Mater., 2017, 2: 17043.

[15]

Yan C, Barlow S, Wang Z, Yan H, Jen A K Y, Marder S R, Zhan X. Nat. Rev. Mater., 2018, 3: 18003.

[16]

Song M, Hao H, Chen W, Gu F, Ba X. Chem. J. Chinese Universities, 2019, 40(7): 1527.

[17]

He C, Pan Y, Ouyang Y, Shen Q, Gao Y, Yan K, Fang J, Chen Y, Ma C, Min J, Zhang C, Zuo L, Chen H. Energy Environ. Sci., 2022, 15: 2537.

[18]

Zhu L, Zhang M, Xu J, Li C, Yan J, Zhou G, Zhong W, Hao T, Song J, Xue X, Zhou Z, Zeng R, Zhu H, Chen C C, MacKenzie R C I, Zou Y, Nelson J, Zhang Y, Sun Y, Liu F. Nat. Mater., 2022, 21: 656.

[19]

Bi P, Zhang S, Chen Z, Xu Y, Cui Y, Zhang T, Ren J, Qin J, Hong L, Hao X, Hou J. Joule, 2021, 5: 2408.

[20]

Zheng Z, Wang J, Bi P, Ren J, Wang Y, Yang Y, Liu X, Zhang S, Hou J. Joule, 2022, 6: 171.

[21]

Liang Y, Zhang D, Wu Z, Jia T, Lüer L, Tang H, Hong L, Zhang J, Zhang K, Brabec C J, Li N, Huang F. Nat. Energy, 2022, 7: 1180.

[22]

Baran D, Ashraf R S, Hanifi D A, Abdelsamie M, Gasparini N, Rohr J A, Holliday S, Wadsworth A, Lockett S, Neophytou M, Emmott C J, Nelson J, Brabec C J, Amassian A, Salleo A, Kirchartz T, Durrant J R, McCulloch I. Nat. Mater., 2017, 16: 363.

[23]

Liu Y, Liu B, Ma C-Q, Huang F, Feng G, Chen H, Hou J, Yan L, Wei Q, Luo Q, Bao Q, Ma W, Liu W, Li W, Wan X, Hu X, Han Y, Li Y, Zhou Y, Zou Y, Chen Y, Li Y, Chen Y, Tang Z, Hu Z, Zhang Z-G, Bo Z. Sci. China Chem., 2021, 65: 224.

[24]

Sorrentino R, Kozma E, Luzzati S, Po R C. Energy Environ. Sci., 2021, 14: 180.

[25]

Wurthner F, Saha-Moller C R, Fimmel B, Ogi S, Leowanawat P, Schmidt D. Chem. Rev., 201, 116: 962.

[26]

Yao J, Qiu B, Zhang Z G, Xue L, Wang R, Zhang C, Chen S, Zhou Q, Sun C, Yang C, Xiao M, Meng L, Li Y. Nat. Commun., 2020, 11: 2726.

[27]

Xie Y, Zhang K, Yamauchi Y, Oyaizu K, Jia Z. Mater. Horiz., 2021, 8: 803.

[28]

Joo Y, Agarkar V, Sung S H, Savoie B M, Boudouris B W. Science, 2018, 359: 1391.

[29]

Zhang M, Guo X, Ma W, Ade H, Hou J. Adv. Mater., 2015, 27: 4655.

[30]

Cui Y, Yao H, Hong L, Zhang T, Tang Y, Lin B, Xian K, Gao B, An C, Bi P, Ma W, Hou J. Natl. Sci. Rev., 2020, 7(7): 1239.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/