A Robust Wood-inspired Catalytic System for Highly Efficient Reduction of 4-Nitrophenol

Zeyu Wang , Fei Long , Huailing Gao , Shuhong Yu

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (1) : 109 -114.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (1) : 109 -114. DOI: 10.1007/s40242-023-2338-4
Article

A Robust Wood-inspired Catalytic System for Highly Efficient Reduction of 4-Nitrophenol

Author information +
History +
PDF

Abstract

Porous solid scaffolds play key roles in preventing nanocatalysts from agglomeration, greatly maintaining the catalytic efficiency and stability of nanocatalysts. However, facile preparation of robust scaffolds with high mass transfer efficiency for loading nanocatalysts remains a major challenge. Here, we fabricate a wood-inspired shape-memory chitosan scaffold for loading Au nanoparticles to reduce 4-nitrophenol via a simple “freeze-casting and dip-adsorption” approach. The obtained catalytic scaffold highly resembles the unidirectional microchannel structure of natural wood, resulting in robust mechanical properties and outstanding water absorption capacity. Additionally, Au nanoparticles can be firmly and uniformly anchored on the inner surface of these microchannels via electrostatic interaction, forming numerous microreactors. This catalytic system exhibits a high 4-nitrophenol conversion rate of 99% in 5 s and impressive catalytic stability even after continuously treating with more than 3 L of highly concentrated 4-nitrophenol solution(1 mmol/L). Therefore, the wood-like catalytic system presented here demonstrates the potential to be applied in the field of water treatment and environmental protection.

Keywords

Wood-like structure / Freeze casting / Catalytic scaffold / Shape-memory / Mass transfer efficiency

Cite this article

Download citation ▾
Zeyu Wang, Fei Long, Huailing Gao, Shuhong Yu. A Robust Wood-inspired Catalytic System for Highly Efficient Reduction of 4-Nitrophenol. Chemical Research in Chinese Universities, 2023, 39(1): 109-114 DOI:10.1007/s40242-023-2338-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lewis L N. Chem. Rev., 1993, 93: 2693.

[2]

Miyaura N, Suzuki A. Chem. Rev., 1995, 95: 2457.

[3]

Levin S, Fritzsche J, Nilsson S, Runemark A, Dhokale B, Strom H, Sunden H. Nat. Commun., 2019, 10: 4426.

[4]

Wu H, Huang X, Gao M-M, Liao X-P, Shi B. Green Chem., 2011, 13: 651.

[5]

Kumar Sahoo P, Panigrahy B, Thakur D, Bahadur D. N. J. Chem., 2017, 41: 7861.

[6]

Kim D H, Jeong J H, Woo H C, Kim M H. Chem. Eng. J., 2021, 420: 127628.

[7]

Xu C, Liu T, Guo W, Sun Y, Liang C, Cao K, Guan T, Liang Z, Jiang L. Adv. Eng. Mater., 2020, 22: 1901088.

[8]

Hu R-Z, Zhang X-Q, Yao X-H, Yang J-X, Liu E-J, Chen T, Fu Y-J. Ind. Crop. Prod., 2022, 179: 114690.

[9]

Qiao L-Z, Li S-S, Li Y-L, Liu Y, Du K-F. J. Clean. Prod., 2020, 253: 120017.

[10]

Li Z, Xiao D, Ge Y, Koehler S. ACS Appl. Mater. Interfaces, 2015, 7: 15000.

[11]

Zhu H, Luo W, Ciesielski P N, Fang Z, Zhu J-Y, Henriksson G, Himmel M E, Hu L. Chem. Rev., 201, 116: 9305.

[12]

Chen S.-M., Zhang S.-C., Gao H.-L., Wang Q., Zhou L., Zhao H.-Y., Li X.-Y., Gong M., Pan X.-F., Cui C., Wang Z.-Y., Zhang Y., Wu H.-A., Yu S.-H., Natl. Sci. Rev., 2022, nwac195

[13]

Yu Z-L, Yang N, Zhou L-C, Ma Z-Y, Zhu Y-B, Lu Y-Y, Qin B, Xing W-Y, Ma T, Li S-C, Gao H L, Wu H-A, Yu S-H. Sci. Adv., 2018, 4: eaat7223.

[14]

Zhu M, Li Y, Chen G, Jiang F, Yang Z, Luo X, Wang Y, Lacey S D, Dai J, Wang C, Jia C, Wan J, Yao Y, Gong A, Yang B, Yu Z, Das S, Hu L. Adv. Mater., 2017, 29: 1704107.

[15]

Chen F, Gong A-S, Zhu M, Chen G, Lacey S D, Jiang F, Li Y, Wang Y, Dai J, Yao Y, Song J, Liu B, Fu K, Das S, Hu L. ACS Nano, 2017, 11: 4275.

[16]

He S-M, Chen C-J, Chen G, Chen F-J, Dai J-Q, Song J-W, Jiang F, Jia C, Xie H, Yao Y-G, Hitz E, Chen G-G, Mi R-Y, Jiao M-L, Das S, Hu L-B. Chem. Mater., 2020, 32: 1887.

[17]

Gao H-L, Lu Y, Mao L-B, An D, Xu L, Gu J-T, Long F, Yu S-H. Mater. Horiz., 2014, 1: 69.

[18]

Frens G. Nat. Phys. Sci., 1973, 241: 20.

[19]

Deville S, Saiz E, Nalla R K, Tomsia A P. Science, 200, 311: 515.

[20]

Scotti K L, Dunand D C. Prog. Mater. Sci., 2018, 94: 243.

[21]

Mao L-B, Gao H-L, Yao H-B, Liu L, Colfen H, Liu G, Chen S-M, Li S-K, Yan Y-X, Liu Y-Y, Yu S-H. Science, 201, 354: 107.

[22]

Gao H-L, Zhu Y-B, Mao L-B, Wang F-C, Luo X-S, Liu Y-Y, Lu Y, Pan Z, Ge J, Shen W, Zheng Y-R, Xu L, Wang L-J, Xu W-H, Wu H-A, Yu S-H. Nat. Commun., 201, 7: 12920.

[23]

Gao H-L, Wang Z-Y, Cui C, Bao J-Z, Zhu Y-B, Xia J, Wen S-M, Wu H-A, Yu S-H. Adv. Mater., 2021, 33: e2102724.

[24]

Chen S-X, Xue F, Kuang Y, Chen S, Sheng D, Chen H. Biomaterials, 2021, 269: 120533.

[25]

Shi L, Carn F, Boue F, Mosser G, Buhler E. ACS Macro. Lett., 2012, 1: 857.

[26]

Bian T, Gardin A, Gemen J, Houben L, Perego C, Lee B, Elad N, Chu Z, Pavan G M, Klajn R. Nat. Chem., 2021, 13: 940.

[27]

Cui Y, Wang Y, Shao Z, Mao A, Gao W, Bai H. Adv. Mater., 2020, 32: e1908249.

[28]

Cyganowski P, Lesniewicz A, Dzimitrowicz A, Wolska J, Pohl P, Jermakowicz-Bartkowiak D. J. Colloid Interface Sci., 2019, 541: 226.

[29]

Liu T, Cui Z-L, Liu Y, Bai X-F. Appl. Catal. A: Gen., 2019, 588: 117278.

[30]

Vijilvani C, Bindhu M R, Frincy F C, AlSalhi M S, Sabitha S, Saravanakumar K, Devanesan S, Umadevi M, Aljaafreh M J, Atif M. J. Photochem. Photobiol. B, 2020, 202: 111713.

[31]

Li J, Liu C-Y, Liu Y. J. Mater. Chem., 2012, 22: 8426.

[32]

Kuroda K, Ishida T, Haruta M. J. Mol. Catal. A-Chem., 2009, 298: 7.

[33]

Yu X-F, Mao L-B, Ge J, Yu Z-L, Liu J-W, Yu S-H. Sci. Bull., 201, 61: 700.

[34]

Liu T, Sun Y, Jiang B, Guo W, Qin W, Xie Y. ACS Appl. Mater. Interfaces, 2020, 12: 28100.

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/