Self-assembled Supramolecular Artificial Transmembrane Ion Channels: Recent Progress and Application

Yichen Luo , Canhong Zhu , Tianlong Zhang , Tengfei Yan , Junqiu Liu

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (1) : 3 -12.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (1) : 3 -12. DOI: 10.1007/s40242-023-2337-5
Review

Self-assembled Supramolecular Artificial Transmembrane Ion Channels: Recent Progress and Application

Author information +
History +
PDF

Abstract

Natural protein channels have evolved with fantastic spatial structures, which play pivotal physiological functions in all living systems. Learning from nature, chemical scientists have developed a myriad of artificial transmembrane ion channels by using various chemical strategies, among which the non-covalent supramolecular ion channels exhibit remarkable advantages over other forms(e.g., single-molecule ion channel), which exhibited facile preparation methods, easier structural modification and functionalization. In this review, we have systematically summarized the recent progress of supramolecular self-assembled artificial transmembrane ion channels, which were classified by different self-assembly mechanisms, such as hydrogen bonds, π-π interactions, etc. Detailed preparation process and self-assembly strategies of the supramolecular ion channels have been described. Moreover, potential biomedical applications of the supramolecular ion channels have also been carefully discussed in this review. Finally, future opportunities and challenges facing this field were also elaborately discussed. It is anticipated that this review could provide a panoramic sketch and future directions towards the construction of novel artificial ion channels with novel functions and biomedical applications.

Keywords

Self-assembly / Supramolecular / Artificial ion channel / Biomedical application

Cite this article

Download citation ▾
Yichen Luo, Canhong Zhu, Tianlong Zhang, Tengfei Yan, Junqiu Liu. Self-assembled Supramolecular Artificial Transmembrane Ion Channels: Recent Progress and Application. Chemical Research in Chinese Universities, 2023, 39(1): 3-12 DOI:10.1007/s40242-023-2337-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hedin L E, Illergard K, Elofsson A. J. Proteome Res., 2011, 10: 3324.

[2]

Cho W, Stahelin R V. Annu. Rev. Biophys. Biomol. Struct., 2005, 34: 119.

[3]

Elborn J S. Lancet, 201, 388: 2519.

[4]

Sanguinetti M C, Tristani-Firouzi M. Nature, 200, 440: 463.

[5]

Sakai N, Sorde N, Matile S. J. Am. Chem. Soc., 2003, 125: 7776.

[6]

Sakai N, Matile S. Langmuir, 2013, 29: 9031.

[7]

Pedersen C J. J. Am. Chem. Soc., 1967, 89: 7017.

[8]

Tang C, Wang L, Yun Y, Zhang C, Liu B. Acta Chimi. Sin., 2011, 69: 343.

[9]

Gokel G W, Leevy W M, Weber M E. Chem. Rev., 2004, 104: 2723.

[10]

Nakano A, Xie Q, Mallen J V, Echegoyen L, Gokel G W. J. Am. Chem. Soc., 1990, 112: 1287.

[11]

Neevel J G, Nolte R J M. Tetrahedron Lett., 1984, 25: 2263.

[12]

Voyer N, Robitaille M. J. Am. Chem. Soc., 1995, 117: 6599.

[13]

Ren C L, Shen J, Zeng H Q. J. Am. Chem. Soc., 2017, 139: 12338.

[14]

Gilles A, Barboiu M. J. Am. Chem. Soc., 201, 138: 426.

[15]

Li Y H, Zheng S P, Legrand Y M, Gilles A, Van der Lee A, Barboiu M. Angew. Chem. Int. Ed., 2018, 57: 10520.

[16]

Li Y-H, Zheng S-P, Wang D, Barboiu M. Chemistry, 2020, 2: 11.

[17]

Sun Z H, Gilles A, Kocsis I, Legrand Y M, Petit E, Barboiu M. Chemistry, 201, 22: 2158.

[18]

Yan T F, Liu S D, Li C, Xu J Y, Yu S J, Wang T T, Sun H C, Liu J Q. Angew. Chem. Int. Ed., 2022, 61: e202210214.

[19]

Bao C Y, Ma M X, Meng F N, Lin Q N, Zhu L Y. New J. Chem., 2015, 39: 6297.

[20]

Zhou Y, Chen Y, Zhu P P, Si W, Hou J L, Liu Y. ChemComm., 2017, 53: 3681.

[21]

Meleleo D, Gerbino A, Mastrodonato M. Biophys. Chem., 2022, 290: 106880.

[22]

Ghadiri M R, Granja J R, Buehler L K. Nature, 1994, 369: 301.

[23]

Montenegro J, Ghadiri M R, Granja J R. Acc. Chem. Res., 2013, 46: 2955.

[24]

Calvelo M, Granja J R, Garcia-Fandino R. Phys. Chem. Chem. Phys., 2019, 21: 20750.

[25]

Ren C, Zeng F, Shen J, Chen F, Roy A, Zhou S, Ren H, Zeng H. J. Am. Chem. Soc., 2018, 140: 8817.

[26]

Zeng F, Liu F, Yuan L, Zhou S, Shen J, Li N, Ren H, Zeng H. Org. Lett., 2019, 21: 4826.

[27]

Langecker M, Arnaut V, Martin T G, List J, Renner S, Mayer M, Dietz H, Simmel F C. Science, 2012, 338: 932.

[28]

Gopfrich K, Zettl T, Meijering A E C, Hernandez-Ainsa S, Kocabey S, Liedl T, Keyser U F. Nano Lett., 2015, 15: 3134.

[29]

Hud N V, Smith F W, Anet F A L, Feigon J. Biochemistry, 199, 35: 15383.

[30]

Kwok C K, Merrick C J. Trends Biotechnol., 2017, 35: 997.

[31]

Kaucher M S, Harrell W A, Davis J T. J. Am. Chem. Soc., 200, 128: 38.

[32]

Tripathi P, Shuai L, Joshi H, Yamazaki H, Fowle W H, Aksimentiev A, Fenniri H, Wanunu M. J. Am. Chem. Soc., 2020, 142: 1680.

[33]

Zhou X B, Liu G D, Yamato K, Shen Y, Cheng R X, Wei X X, Bai W L, Gao Y, Li H, Liu Y, Liu F T, Czajkowsky D M, Wang J F, Dabney M J, Cai Z H, Hu J, Bright F V, He L, Zeng X C, Shao Z F, Gong B. Nat. Commun., 2012, 3: 949.

[34]

Gordon J L M, Böhmer V, Vogt W. Tetrahedron Lett., 1995, 36: 2445.

[35]

Matthews S E, Schmitt P, Felix V, Drew M G B, Beer P D. J. Am. Chem. Soc., 2002, 124: 1341.

[36]

Li C B, Yue Y L, Liu B Q, Fan S D. Chin. J. Org. Chem., 2011, 31: 819.

[37]

Tanaka Y, Kobuke Y, Sokabe M. Angew. Chem. Int. Ed. Engl., 1995, 34: 693.

[38]

Yoshino N., Satake A., Kobuke Y., 2001, 113, 471

[39]

Sato K, Sasaki R, Matsuda R, Nakagawa M, Ekimoto T, Yamane T, Ikeguchi M, Tabata K V, Noji H, Kinbara K. J. Am. Chem. Soc., 2022, 144: 11802.

[40]

Ren C, Ding X, Roy A, Shen J, Zhou S, Chen F, Li S F Y, Ren H, Yang Y Y, Zeng H. Chem. Sci., 2018, 9: 4044.

[41]

Lang C, Deng X L, Yang F H, Yang B, Wang W, Qi S W, Zhang X, Zhang C Y, Dong Z Y, Liu J Q. Angew. Chem. Int. Ed., 2017, 56: 12668.

[42]

Lang C, Li W F, Dong Z Y, Zhang X, Yang F H, Yang B, Deng X L, Zhang C Y, Xu J Y, Liu J Q. Angew. Chem. Int. Ed., 201, 55: 9723.

[43]

Yan T F, Liu S D, Xu J Y, Sun H C, Yu S J, Liu J Q. Nano Lett., 2021, 21: 10462.

[44]

Zhao H, Sheng S, Hong Y, Zeng H. J. Am. Chem. Soc., 2014, 136: 14270.

[45]

Qi S, Zhang C, Yu H, Zhang J, Yan T, Lin Z, Yang B, Dong Z. J. Am. Chem. Soc., 2021, 143: 3284.

[46]

Zhang C, Zhang J, Li W, Mao S, Dong Z. Chempluschem, 2021, 86: 492.

[47]

Bai D Y, Yan T F, Wang S, Wang Y B, Fu J Y, Fang X M, Zhu J Y, Liu J Q. Angew. Chem. Int. Ed., 2020, 59: 13602.

[48]

Li Y, Jia L, Tang X, Dong J, Cui Y, Liu Y. Mater. Chem. Front., 2022, 6: 1010.

[49]

Min J, Zhang C, Qi S, Wang L, Dong Z. Chem. Res. Chinese Universities, 2022, 38(3): 803.

[50]

Kiryakova S, Dencheva-Zarkova M, Genova J. J. Phys.: Conf. Ser., 2014, 558: 012027.

[51]

Matsumori N, Yamaji N, Matsuoka S, Oishi T, Murata M. J. Am. Chem. Soc., 2002, 124: 4180.

[52]

Gentzsch M, Mall M A. Chest, 2018, 154: 383.

[53]

Burg S, Attali B. Trends. Pharmacol. Sci., 2021, 42: 491.

[54]

Holger, Lerche, Karin, Jurkat-Rott, Frank, Lehmann-Horn., Am. J. Med. Genet., 2001

[55]

Pilar M M, Molenaar P C, Mario L, Jo S, De B, Andrei S, Jerome H, Ryad T, Marion L, Van O J. Front. Genet., 2013, 4: 181.

[56]

Muraglia K A, Chorghade R S, Kim B R, Tang X X, Shah V S, Grillo A S, Daniels P N, Cioffi A G, Karp P H, Zhu L, Welsh M J, Burke M D. Nature, 2019, 567: 405.

[57]

Sheppard D N, Davis A P. Nature, 2019, 567: 315.

[58]

Beven L, Helluin O, Molle G, Duclohier H, Wroblewski H. Biochim. Biophys. Acta, 1999, 1421: 53.

[59]

Wu C H, Li M M, Chen W J. Diabetes Metab. Syndr. Obes., 2021, 14: 285.

[60]

Haoyang W W, Zhang M, Hou J L. Chinese J. Chem., 2019, 37: 25.

[61]

Porter S L, Coulter S M, Pentlavalli S, Thompson T P, Laverty G. Acta Biomater., 2018, 77: 96.

[62]

Prevarskaya N, Skryma R, Shuba Y. Trends. Mol. Med., 2010, 16: 107.

[63]

Kunzelmann K. J. Membr. Biol., 2005, 205: 159.

[64]

Malla J A, Umesh R M, Yousf S, Mane S, Sharma S, Lahiri M, Talukdar P. Angew. Chem. Int. Ed., 2020, 59: 7944.

[65]

Abdul M, Hoosein N. Cancer Lett., 2002, 186: 99.

[66]

Britschgi A, Bill A, Brinkhaus H, Rothwell C, Clay I, Duss S, Rebhan M, Raman P, Guy C T, Wetzel K, George E, Popa M O, Lilley S, Choudhury H, Gosling M, Wang L, Fitzgerald S, Borawski J, Baffoe J, Labow M, Gaither L A, Bentires-Alj M. P. Natl. Acad. Sci. USA, 2013, 110: E1026.

[67]

Saha T, Gautam A, Mukherjee A, Lahiri M, Talukdar P. J. Am. Chem. Soc., 201, 138: 16443.

[68]

Spugnini E P, Sonveaux P, Stock C, Perez-Sayans M, De Milito A, Avnet S, Garcia Garcia A, Harguindey S, Fais S. Biochim. Biophys. Acta Biomembr., 2015, 1848: 2715.

[69]

Panyi G, Beeton C, Felipe A. Philos. Trans. R. Soc. Lond., B: Biol. Sci., 2014, 369: 1638.

[70]

Pedersen S F, Stock C. Cancer Res., 2013, 73: 1658.

[71]

Haoyang W-W, Xiao Q, Ye Z, Fu Y, Zhang D-W, Li J, Xiao L, Li Z-T, Hou J-L. ChemComm., 2021, 57: 1097.

AI Summary AI Mindmap
PDF

182

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/