Construction and Application of DNAzyme-based Nanodevices

Bo Wang , Menghui Wang , Fangqi Peng , Xiaoyi Fu , Mei Wen , Yuyan Shi , Mei Chen , Guoliang Ke , Xiao-Bing Zhang

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (1) : 42 -60.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (1) : 42 -60. DOI: 10.1007/s40242-023-2334-8
Review

Construction and Application of DNAzyme-based Nanodevices

Author information +
History +
PDF

Abstract

The development of stimuli-responsive nanodevices with high efficiency and specificity is very important in biosensing, drug delivery, and so on. DNAzymes are a class of DNA molecules with the specific catalytic activity. Owing to their unique catalytic activity and easy design and synthesis, the construction and application of DNAzymes-based nanodevices have attracted much attention in recent years. In this review, the classification and properties of DNAzyme are first introduced. The construction of several common kinds of DNAzyme-based nanodevices, such as DNA motors, signal amplifiers, and logic gates, is then systematically summarized. We also introduce the application of DNAzyme-based nanodevices in sensing and therapeutic fields. In addition, current limitations and future directions are discussed.

Keywords

DNAzyme / Nanodevice / Biosensor / Therapy

Cite this article

Download citation ▾
Bo Wang, Menghui Wang, Fangqi Peng, Xiaoyi Fu, Mei Wen, Yuyan Shi, Mei Chen, Guoliang Ke, Xiao-Bing Zhang. Construction and Application of DNAzyme-based Nanodevices. Chemical Research in Chinese Universities, 2023, 39(1): 42-60 DOI:10.1007/s40242-023-2334-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DiZ, ZhaoJ, ChuH, XueW, ZhaoY, LiLAdv. Mater., 2019, 31: e1901885.

[2]

ShiH, WangY, ZhengJ, NingL, HuangY, ShengA, ChenT, XiangY, ZhuX, LiGACS Nano, 2019, 13: 12840.

[3]

WangX, KimG, ChuJ L, SongT, YangZ, GuoW, ShaoX, OelzeM L, LiK C, LuYJ. Am. Chem. Soc., 2022, 144: 5812.

[4]

WangZ, SongL, LiuQ, TianR, ShangY, LiuF, LiuS, ZhaoS, HanZ, SunJ, JiangQ, DingBAngew. Chem. Int. Ed., 2021, 60: 2594.

[5]

MoldenT A, NiccumC T, KolpashchikovD MAngew. Chem. Int. Ed., 2020, 59: 21190.

[6]

LiuS, JiangQ, ZhaoX, ZhaoR, WangY, WangY, LiuJ, ShangY, ZhaoS, WuT, ZhangY, NieG, DingBNat. Mater., 2021, 20: 421.

[7]

YueL, WangS, ZhouZ, WillnerIJ. Am. Chem. Soc., 2020, 142: 21577.

[8]

DengJ, LiuW, SunM, WaltherAAngew. Chem. Int. Ed., 2022, 61: e202113477

[9]

DuY, PengP, LiTACS Nano, 2019, 13: 5778.

[10]

Zhang Q., Xia K., Jiang M., Li Q., Chen W., Han M., Li W., Ke R., Wang F., Zhao Y., Liu Y., Fan C., Gu H., Angew. Chem. Int. Ed., 2022, e202212011

[11]

EllingtonA D, SzostakJ WNature, 1990, 346: 818.

[12]

BeaudryA A, JoyceG FScience, 1992, 257: 635.

[13]

LiuJ, CaoZ, LuYChem. Rev., 2009, 109: 1948.

[14]

BreakerR R, JoyceG FChem. Bio., 1994, 1: 223.

[15]

LuL M, ZhangX B, KongR M, YangB, TanWJ. Am. Chem. Soc., 2011, 133: 11686.

[16]

SantoroS W, JoyceG F, SakthivelK, GramatikovaS, BarbasC FJ. Am. Chem. Soc., 2000, 122: 2433.

[17]

SantoroS W, JoyceG FProc. Natl. Acad. Sci. USA, 1997, 94: 4262.

[18]

LiJ, ZhengW, KwonA H, LuYNucleic Acids Res., 2000, 28: 481.

[19]

ZhangX B, WangZ, XingH, XiangY, LuYAnal. Chem., 2010, 82: 5005.

[20]

ElbazJ, ShlyahovskyB, WillnerIChem. Comm., 2008, 13: 1569.

[21]

ZhaoD, ChangD, ZhangQ, ChangY, LiuB, SunC, LiZ, DongC, LiuM, LiYJ. Am. Chem. Soc., 2021, 143: 15084.

[22]

YangY, ZhuW, FengL, ChaoY, YiX, DongZ, YangK, TanW, LiuZ, ChenMNano Lett., 2018, 18: 6867.

[23]

WangJ, WangH, WangH, HeS, LiR, DengZ, LiuX, WangFACS Nano, 2019, 13: 5852.

[24]

WangJ, YuS, WuQ, GongX, HeS, ShangJ, LiuX, WangFAngew. Chem. Int. Ed., 2021, 60: 10766.

[25]

WangH, ChenY, WangH, LiuX, ZhouX, WangFAngew. Chem. Int. Ed., 2019, 58: 7380.

[26]

WangQ, TanK, WangH, ShangJ, WanY, LiuX, WengX, WangFJ. Am. Chem. Soc., 2021, 143: 6895.

[27]

WangY, NguyenK, SpitaleR C, ChaputJ CNat. Chem., 2021, 13: 319.

[28]

WangZ, NiuJ, ZhaoC, WangX, RenJ, QuXAngew. Chem. Int. Ed., 2021, 60: 12431.

[29]

ZhaoH, ZhangZ, ZuoD, LiL, LiF, YangDNano Lett., 2021, 21: 5377.

[30]

CarmiN, BalkhiS R, BreakerR RProc. Natl. Acad. Sci. USA, 1998, 95: 2233.

[31]

PurthaW E, CoppinsR L, SmalleyM K, SilvermanS KJ. Am. Chem. Soc., 2005, 127: 13124.

[32]

LuC H, WangF, WillnerIJ. Am. Chem. Soc., 2012, 134: 10651.

[33]

CuenoudB, SzostakJ WNature, 1995, 375: 611.

[34]

LiY, BreakerR RProc. Natl. Acad. Sci. USA, 1999, 96: 2746.

[35]

ChandrasekarJ, SilvermanS KProc. Natl. Acad. Sci. USA, 2013, 110: 5315.

[36]

CamdenA J, WalshS M, SukS H, SilvermanS KBiochemistry, 2016, 55: 2671.

[37]

LyuM, KongL, YangZ, WuY, McGheeC E, LuYJ. Am. Chem. Soc., 2021, 143: 9724.

[38]

ZimmermannA C, WhiteI M, KahnJ DTalanta, 2020, 211: 120709.

[39]

JimenezR M, PolancoJ A, LuptakATrends Biochem. Sci., 2015, 40: 648.

[40]

SantoroS W, JoyceG FBiochemistry, 1998, 37: 13330.

[41]

SchubertS, GulD C, GrunertH P, ZeichhardtH, ErdmannV A, KurreckJNucleic Acids Res., 2003, 31: 5982.

[42]

BreakerR R, JoyceG FChem. Bio., 1995, 2: 655.

[43]

LiJ, LuYJ. Am. Chem. Soc., 2000, 122: 10466.

[44]

TorabiS F, WuP, McGheeC E, ChenL, HwangK, ZhengN, ChengJ, LuYProc. Natl. Acad. Sci. USA, 2015, 112: 5903.

[45]

ZhouW, ZhangY, HuangP J, DingJ, LiuJNucleic Acids Res., 2016, 44: 354.

[46]

GellertM, LipsettM N, DaviesD RProc. Natl. Acad. Sci. USA, 1962, 48: 2013.

[47]

KosmanJ, JuskowiakBAnal. Chim. Acta, 2011, 707: 7.

[48]

LiY, SenDBiochemistry, 1997, 36: 5589.

[49]

TravascioP, LiY, SenDChem. Biol., 1998, 5: 505.

[50]

GongL, ZhaoZ, LvY F, HuanS Y, FuT, ZhangX B, ShenG L, YuR QChem. Comm., 2015, 51: 979.

[51]

StadlbauerP, IslamB, OtyepkaM, ChenJ, MonchaudD, ZhouJ, MergnyJ-L, ŠponerJJ. Chem. Theory Comput., 2021, 17: 1883.

[52]

ChengX, LiuX, BingT, CaoZ, ShangguanDBiochemistry, 2009, 48: 7817.

[53]

KongD M, WuJ, WangN, YangW, ShenH XTalanta, 2009, 80: 459.

[54]

KongD M, YangW, WuJ, LiC X, ShenH XAnalyst, 2010, 135: 321.

[55]

KongD M, XuJ, ShenH XAnal. Chem., 2010, 82: 6148.

[56]

StefanL, DenatF, MonchaudDNucleic Acids Res., 2012, 40: 8759.

[57]

StefanL, DenatF, MonchaudDJ. Am. Chem. Soc., 2011, 133: 20405.

[58]

QiC, ZhangN, YanJ L, LiuX J, BingT, MeiH C, ShangguanD HRSC Adv., 2014, 4: 1441.

[59]

LiW, LiY, LiuZ, LinB, YiH, XuF, NieZ, YaoSNucleic Acids Res., 2016, 44: 7373.

[60]

AlbadaH B, GolubE, WillnerIChem. Sci., 2016, 7: 3092.

[61]

WangZ G, WangH, LiuQ, DuanF Y, ShiX H, DingB QACS Catal., 2018, 8: 7016.

[62]

XiaoL, ZhouZ, FengM, TongA, XiangYBioconjug. Chem., 2016, 27: 621.

[63]

XiaoY, PavlovV, GillR, BourenkoT, WillnerIChembiochem, 2004, 5: 374.

[64]

WangD, ChaiY, YuanY, YuanRAnal. Chem., 2019, 91: 3561.

[65]

ShenP, LiW, LiuY, DingZ, DengY, ZhuX, JinY, LiY, LiJ, ZhengTAnal. Chem., 2017, 89: 11862.

[66]

GeC, LuoQ, WangD, ZhaoS, LiangX, YuL, XingX, ZengLAnal. Chem., 2014, 86: 6387.

[67]

HuangR, HeL, XiaY, XuH, LiuC, XieH, WangS, PengL, LiuY, LiuY, HeN, LiZSmall, 2019, 15: e1900735.

[68]

HuZ, YangJ, XuF, SunG, PanX, XiaM, ZhangS, ZhangXJ. Am. Chem. Soc., 2021, 143: 12361.

[69]

ZhangP, OuyangY, WillnerIChem. Sci., 2021, 12: 4810.

[70]

ZhangR, WuJ, AoH, FuJ, QiaoB, WuQ, JuHAnal. Chem., 2021, 93: 9933.

[71]

ZhuL, YeJ, YanM, YuL, PengY, HuangJ, YangXAnal. Chem., 2021, 93: 2644.

[72]

ShinJ S, PierceN AJ. Am. Chem. Soc., 2004, 126: 10834.

[73]

TianY, HeY, ChenY, YinP, MaoCAngew. Chem. Int. Ed., 2005, 44: 4355.

[74]

ChaT G, PanJ, ChenH, SalgadoJ, LiX, MaoC, ChoiJ HNat. Nanotechnol., 2014, 9: 39.

[75]

ChenJ, LuoZ, SunC, HuangZ, ZhouC, YinS, DuanY, LiYTrends Analyt. Chem., 2019, 120: 115626.

[76]

LiuX, Niazov-ElkanA, WangF, WillnerINano Lett., 2013, 13: 219.

[77]

ZhuL, LiuQ, YangB, JuH, LeiJAnal. Chem., 2018, 90: 6357.

[78]

HeJ L, ZhangY, MeiT T, TangL, HuangS Y, CaoZBiosens. Bioelectron., 2019, 144: 111692.

[79]

ChaiH, WangM, ZhangC, TangY, MiaoPBioconjug. Chem., 2020, 31: 764.

[80]

GeJ, ZhaoY, GaoX, LiH, JieGAnal. Chem., 2019, 91: 14117.

[81]

YangX, ShiD, ZhuS, WangB, ZhangX, WangGACS Sens., 2018, 3: 1368.

[82]

CaiS, ChenM, LiuM, HeW, LiuZ, WuD, XiaY, YangH, ChenJBiosens. Bioelectron., 2016, 85: 184.

[83]

QingM, XieS, CaiW, TangD, TangY, ZhangJ, YuanRAnal. Chem., 2018, 90: 11439.

[84]

XiongE, ZhenD, JiangL, ZhouXAnal. Chem., 2019, 91: 15317.

[85]

DuH, YangP, HouX, HouX D, ChenJ BMicrochem. J., 2018, 139: 260.

[86]

DuH, YangP, HouX, ZhouR, HouX, ChenJChem. Comm., 2019, 55: 3610.

[87]

ZhangH, XuX, JiangWChem. Sci., 2020, 11: 7415.

[88]

YangK, WangH, MaN, ZengM, LuoH, HeDACS Appl. Mater. Interfaces, 2018, 10: 44546.

[89]

PengH, LiX F, ZhangH, LeX CNat. Commun., 2017, 8: 14378.

[90]

LiuC, HuY, PanQ, YiJ, ZhangJ, HeM, HeM, ChenT, ChuXBiosens. Bioelectron., 2019, 136: 31.

[91]

LiuC, HuY, PanQ, YiJ, ZhangJ, HeM, HeM, NieC, ChenT, ChuXChem. Comm., 2020, 56: 3496.

[92]

ChenK, HuangQ, FuT, KeG, ZhaoZ, ZhangX, TanWAnal. Chem., 2020, 92: 7404.

[93]

WangJ, WangD X, TangA N, KongD MAnal. Chem., 2019, 91: 5244.

[94]

YinY, ChenG, GongL, GeK, PanW, LiN, MachukiJ O, YuY, GengD, DongH, GaoFAnal. Chem., 2020, 92: 9247.

[95]

LiH, GaoJ, CaoL, XieX, FanJ, WangH, WangH H, NieZAngew. Chem. Int. Ed., 2021, 60: 26001.

[96]

ChenY, WangM, MaoCAngew. Chem. Int. Ed., 2004, 43: 3554.

[97]

ChenY, MaoCJ. Am. Chem. Soc., 2004, 126: 8626.

[98]

ChenX Y, FuX R, WuY Y, JinY F, LiWAnal. Methods, 2020, 12: 1579.

[99]

XiongZ, WangQ, ZhangJ, YunW, WangX, HaX, YangLSpectrochim. Acta A: Mol. Biomol. Spectrosc., 2020, 229: 118017.

[100]

HeM, HeM, NieC, YiJ, ZhangJ, ChenT, ChuXACS Appl. Mater. Interfaces, 2021, 13: 8015.

[101]

HuY, WangF, LuC H, GirshJ, GolubE, WillnerIChemistry, 2014, 20: 16203.

[102]

LiY J, DingX J, LiD D, WuH P, HuangW, DingS JAnal. Methods, 2019, 11: 1613.

[103]

WenZ B, LiangW B, ZhuoY, XiongC Y, ZhengY N, YuanR, ChaiY QChem. Comm., 2017, 53: 7525.

[104]

WuZ, FanH, SatyavoluN S R, WangW, LakeR, JiangJ H, LuYAngew. Chem. Int. Ed., 2017, 56: 8721.

[105]

ZhangC, ChenJ, SunR, HuangZ, LuoZ, ZhouC, WuM, DuanY, LiYACS Sens., 2020, 5: 2977.

[106]

QuanK, LiJ, WangJ, XieN, WeiQ, TangJ, YangX, WangK, HuangJChem. Sci., 2019, 10: 1442.

[107]

WeiJ, WangH, WuQ, GongX, MaK, LiuX, WangFAngew. Chem. Int. Ed., 2020, 59: 5965.

[108]

WangH, WangH, WuQ, LiangM, LiuX, WangFChem. Sci., 2019, 10: 9597.

[109]

GongK, WuQ, WangH, HeS, ShangJ, WangFChem. Comm., 2020, 56: 11410.

[110]

ZhangD, MaF, LengJ, ZhangC YChem. Comm., 2018, 54: 13678.

[111]

BatuleB S, KimS U, MunH, ChoiC, ShimW B, KimM GJ. Agric. Food Chem., 2018, 66: 3003.

[112]

XuJ, QianJ, LiH, WuZ S, ShenW, JiaLBiosens. Bioelectron., 2016, 75: 41.

[113]

ParkY, LeeC Y, KangS, KimH, ParkK S, ParkH GNanotechnology, 2018, 29: 085501.

[114]

LongY, ZhouC, WangC, CaiH, YinC, YangQ, XiaoDSci. Rep., 2016, 6: 23949.

[115]

XiangB, HeK, ZhuR, LiuZ, ZengS, HuangY, NieZ, YaoSACS Appl. Mater. Interfaces, 2016, 8: 22801.

[116]

LiD, ChengW, YanY, ZhangY, YinY, JuH, DingSTalanta, 2016, 146: 470.

[117]

MiL, SunY, ShiL, LiTACS Appl. Mater. Interfaces, 2020, 12: 7879.

[118]

GeJ, HuY, DengR, LiZ, ZhangK, ShiM, YangD, CaiR, TanWAnal. Chem., 2020, 92: 13588.

[119]

ZhouT, HuangM, LinJ, HuangR, XingDAnal. Chem., 2021, 93: 2038.

[120]

WangX C, LiuW W, YinB B, SangY W, LiuZ P, DaiY, DuanX Z, ZhangG, DingS J, TaoZ HMicrochim Acta, 2017, 184: 1603.

[121]

ZhouD H, WuW, LiQ, PanJ F, ChenJ HAnal. Methods, 2019, 11: 3546.

[122]

OrbachR, RemacleF, LevineR D, WillnerIProc. Natl. Acad. Sci. USA, 2012, 109: 21228.

[123]

LilienthalS, KleinM, OrbachR, WillnerI, RemacleF, LevineR DChem. Sci., 2017, 8: 2161.

[124]

ZhangJ, LuYAngew. Chem. Int. Ed., 2018, 57: 9702.

[125]

ChenF, BaiM, CaoK, ZhaoY, CaoX, WeiJ, WuN, LiJ, WangL, FanC, ZhaoYACS Nano, 2017, 11: 11908.

[126]

QianR C, ZhouZ R, GuoW, WuY, YangZ, LuYJ. Am. Chem. Soc., 2021, 143: 5737.

[127]

ShlyahovskyB, LiY, LioubashevskiO, ElbazJ, WillnerIACS Nano, 2009, 3: 1831.

[128]

ZhuJ, ZhangL, LiT, DongS, WangEAdv. Mater., 2013, 25: 2440.

[129]

ChenJ, PanJ, ChenSChem. Sci., 2018, 9: 300.

[130]

ChenJ, PanJ, LiuCAnal. Chem., 2020, 92: 6173.

[131]

HaydellM W, CentolaM, AdamV, ValeroJ, FamulokMJ. Am. Chem. Soc., 2018, 140: 16868.

[132]

BiS, YanY, HaoS, ZhangSAngew. Chem. Int. Ed., 2010, 49: 4438.

[133]

ZhangC, YangJ, JiangS, LiuY, YanHNano Lett., 2016, 16: 736.

[134]

WangJ, ZhouZ, LiZ, WillnerIChem. Sci., 2020, 12: 341.

[135]

WangJ, LiZ, WillnerINat. Commun., 2022, 13: 4414.

[136]

DongJ, OuyangY, WangJ, O’HaganM P, WillnerIACS Nano, 2022, 16: 6153.

[137]

LiZ, WangJ, ZhouZ, O’HaganM P, WillnerIACS Nano, 2022, 16: 3625.

[138]

WangS, YueL, ShpiltZ, CecconelloA, KahnJ S, LehnJ M, WillnerIJ. Am. Chem. Soc., 2017, 139: 9662.

[139]

ZhouZ, YueL, WangS, LehnJ M, WillnerIJ. Am. Chem. Soc., 2018, 140: 12077.

[140]

YueL, WangS, WillnerIJ. Am. Chem. Soc., 2019, 141: 16461.

[141]

YueL, WangS, LilienthalS, WulfV, RemacleF, LevineR D, WillnerIJ. Am. Chem. Soc., 2018, 140: 8721.

[142]

WangS, YueL, LiZ Y, ZhangJ, TianH, WillnerIAngew. Chem. Int. Ed., 2018, 57: 8105.

[143]

WangZ, YangJ, QinG, ZhaoC, RenJ, QuXAngew. Chem. Int. Ed., 2022, 61: e202204291

[144]

JeromeC A, HoshikaS, BradleyK M, BennerS A, BiondiEProc. Natl. Acad. Sci. USA, 2022, 119: e2208261119.

[145]

ChenL, LuoS, GeZ, FanC, YangY, LiQ, ZhangYNano Lett., 2022, 22: 1618.

[146]

Zhao X., Wang Y., Jiang W., Wang Q., Li J., Wen Z., Li A., Zhang K., Zhang Z., Shi J., Liu J., Adv. Mater., 2022, 34

[147]

LiY, ChangY, MaJ, WuZ, YuanR, ChaiYAnal. Chem., 2019, 91: 6127.

[148]

HuangY, LinC, LuoF, QiuB, GuoL, LinZ, ChenGACS Sens., 2019, 4: 2465.

[149]

SiH, ShengR, LiQ, FengJ, LiL, TangBAnal. Chem., 2018, 90: 8785.

[150]

YangZ, LohK Y, ChuY T, FengR, SatyavoluN S R, XiongM, Nakamata HuynhS M, HwangK, LiL, XingH, ZhangX, ChemlaY R, GruebeleM, LuYJ. Am. Chem. Soc., 2018, 140: 17656.

[151]

YangC, YinX, HuanS Y, ChenL, HuX X, XiongM Y, ChenK, ZhangX BAnal. Chem., 2018, 90: 3118.

[152]

CuiM R, LiX L, XuJ J, ChenH YACS Appl. Mater. Interfaces, 2020, 12: 13005.

[153]

LinY, YangZ, LakeR J, ZhengC, LuYAngew. Chem. Int. Ed., 2019, 58: 17061.

[154]

XiongM, YangZ, LakeR J, LiJ, HongS, FanH, ZhangX B, LuYAngew. Chem. Int. Ed., 2020, 59: 1891.

[155]

WuY, MengH M, ChenJ, JiangK, YangR, LiY, ZhangK, QuL, ZhangX B, LiZChem. Comm., 2020, 56: 470.

[156]

XuY, LuZ, FuX, YuF, ChenH, NieYSensors & Actuators B: Chemical, 2020, 306: 127549.

[157]

LiC, XueC, WangJ, LuoM, ShenZ, WuZ SAnal. Chem., 2019, 91: 11529.

[158]

ZhangJ, HeM, NieC, HeM, PanQ, LiuC, HuY, YiJ, ChenT, ChuXAnal. Chem., 2019, 91: 9049.

[159]

ZhuD, WeiY, SunT, ZhangC, AngL, SuS, MaoX, LiQ, FanC, ZuoX, ChaoJ, WangLAnal. Chem., 2021, 93: 2226.

[160]

MengX, ZhangK, YangF, DaiW, LuH, DongH, ZhangXAnal. Chem., 2020, 92: 8333.

[161]

ZhangT T, PengY, YuanR, XiangYSensors & Actuators B: Chemcial, 2018, 273: 70.

[162]

YangY, HuangJ, YangX, QuanK, WangH, YingL, XieN, OuM, WangKAnal. Chem., 2016, 88: 5981.

[163]

FuX, KeG, PengF, HuX, LiJ, ShiY, KongG, ZhangX B, TanWNat. Commun., 2020, 11: 1518.

[164]

XuY T, RuanY F, WangH Y, YuS Y, YuX D, ZhaoW W, ChenH Y, XuJ JSmall, 2021, 17: e2100503.

[165]

LiJ, WangS, JiangB, XiangY, YuanRAnalyst, 2019, 144: 2430.

[166]

LiC, MaJ, ShiH, HuX, XiangY, LiY, LiGAnal. Chim. Acta, 2018, 1041: 102.

[167]

LiuC, ZhangS, LiX, XueQ, JiangWAnalyst, 2019, 144: 4241.

[168]

GaoT, ChaiW, ShiL, ShiH, ShengA, YangJ, LiGAnalyst, 2019, 144: 6365.

[169]

ZhangR, WangY, QuX, LiS, ZhaoY, ZhangF, LiuS, HuangJ, YuJAnalyst, 2019, 144: 4995.

[170]

WangY, YangL, WangY, LiuW, LiB, JinYAnalyst, 2019, 144: 5959.

[171]

FengC, WangZ, ChenT, ChenX, MaoD, ZhaoJ, LiGAnal. Chem., 2018, 90: 2810.

[172]

WangW J, ShuM B, NieA X, HanH YSensors & Actuators B: Chemical, 2020, 304: 127380.

[173]

ShiuS C, CheungY W, DirkzwagerR M, LiangS, KinghornA B, FraserL A, TangM S L, TannerJ AAdv. Biosyst., 2017, 1: e1600006.

[174]

ShangJ, LiC, LiF, WangQ, YuanB, WangFAnal. Chem., 2021, 93: 2403.

[175]

ZhouW, DingJ, LiuJTheranostics, 2017, 7: 1010.

[176]

TaylorA I, WanC J K, DondeM J, Peak-ChewS-Y, HolligerPNat. Chem., 2022, 14: 1295.

[177]

QianR-C, ZhouZ-R, WuY, YangZ, GuoW, LiD-W, LuYAngew. Chem. Int. Ed., 2022, 61: e202210935

[178]

SinghN, RanjanA, SurS, ChandraR, TandonVJ. Biosci. Bioeng., 2012, 37: 493.

[179]

YuL, ChenY, LinH, GaoS, ChenH, ShiJSmall, 2018, 14: e1800708.

[180]

BhindiR, FahmyR G, LoweH C, ChestermanC N, DassC R, CairnsM J, SaravolacE G, SunL Q, KhachigianL MAm. J. Pathol., 2007, 171: 1079.

[181]

KoleR, KrainerA R, AltmanSNat. Rev. Drug Discov., 2012, 11: 125.

[182]

NedorezovaD D, FakhardoA F, NemirichD V, BryushkovaE A, KolpashchikovD MAngew. Chem. Int. Ed., 2019, 58: 4654.

[183]

ThaiH B D, Levi-AcobasF, YumS Y, JangG, HollensteinM, AhnD RChem. Comm., 2018, 54: 9410.

[184]

MengL, MaW, LinS, ShiS, LiY, LinYACS Appl. Mater. Interfaces, 2019, 11: 6850.

[185]

FanH, ZhaoZ, YanG, ZhangX, YangC, MengH, ChenZ, LiuH, TanWAngew. Chem. Int. Ed., 2015, 54: 4801.

[186]

YiJ T, PanQ S, LiuC, HuY L, ChenT T, ChuXNanoscale, 2020, 12: 10380.

[187]

LiuS Y, XuY, YangH, LiuL, ZhaoM, YinW, XuY T, HuangY, TanC, DaiZ, ZhangH, ZhangJ P, ChenX MAdv. Mater., 2021, 33: e2100849.

[188]

JinY, WangH, LiX, ZhuH, SunD, SunX, LiuH, ZhangZ, CaoL, GaoC, WangH, LiangX J, ZhangJ, YangXACS Appl. Mater. Interfaces, 2020, 12: 26832.

[189]

HendersonB W, DoughertyT JPhotochem. Photobiol., 1992, 55: 145.

[190]

MoanJ, BergKPhotochem. Photobiol., 1992, 55: 931.

[191]

LiW, MaQ Y, WuE XInt. J. Photoenergy, 2012, 2012: 1

[192]

AgostinisP, BergK, CengelK A, FosterT H, GirottiA W, GollnickS O, HahnS M, HamblinM R, JuzenieneA, KesselD, KorbelikM, MoanJ, MrozP, NowisD, PietteJ, WilsonB C, GolabJCA Cancer J. Clin., 2011, 61: 250.

[193]

RobinsonJ T, TabakmanS M, LiangY, WangH, CasalongueH S, VinhD, DaiHJ. Am. Chem. Soc., 2011, 133: 6825.

[194]

ChengL, GongH, ZhuW, LiuJ, WangX, LiuG, LiuZBiomaterials, 2014, 35: 9844.

[195]

FengJ, XuZ, LiuF, ZhaoY, YuW, PanM, WangF, LiuXACS Nano, 2018, 12: 12888.

[196]

LinH, ChenY, ShiJChem. Soc. Rev., 2018, 47: 1938.

[197]

LinL S, SongJ, SongL, KeK, LiuY, ZhouZ, ShenZ, LiJ, YangZ, TangW, NiuG, YangH H, ChenXAngew. Chem. Int. Ed., 2018, 57: 4902.

[198]

SangY, CaoF, LiW, ZhangL, YouY, DengQ, DongK, RenJ, QuXJ. Am. Chem. Soc., 2020, 142: 5177.

[199]

LiY, ZhaoP, GongT, WangH, JiangX, ChengH, LiuY, WuY, BuWAngew. Chem. Int. Ed., 2020, 59: 22537.

[200]

LiuC, ChenY, ZhaoJ, WangY, ShaoY, GuZ, LiL, ZhaoYAngew. Chem. Int. Ed., 2021, 60: 14324.

[201]

Li X., Hu H., Shi Y., Liu Y., Zhou M., Huang Z., Li J., Ke G., Chen M., Zhang X.-B., Chem. Eur. J., 2023, https://doi.org/10.1002/chem.202203227

[202]

ZhouM, YinY, ShiY, HuangZ, ShiY, ChenM, KeG, ZhangX-BChem. Comm., 2022, 58: 4508.

[203]

TuT, HuanS, KeG, ZhangXChem. Res. Chinece Universities, 2022, 384912.

[204]

KongG, XiongM, LiuL, HuL, MengH-M, KeG, ZhangX-B, TanWChem. Soc. Rev., 2021, 50: 1846.

[205]

FuX, ShiY, PengF, ZhouM, YinY, TanY, ChenM, YinX, KeG, ZhangX-BAnal. Chem., 2021, 93: 4967.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/