‘Radicalize’ the Performance of Perovskite Solar Cells with Radical Compounds

Can Wang , Peng Gao

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (2) : 176 -186.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (2) : 176 -186. DOI: 10.1007/s40242-023-2327-7
Review

‘Radicalize’ the Performance of Perovskite Solar Cells with Radical Compounds

Author information +
History +
PDF

Abstract

Perovskite solar cells(PSCs) have attracted tremendous attention due to their outstanding performance within a short development. Radical molecules with unpaired single electrons have been widely used in energy-related fields, such as organic light-emitting diodes(OLEDs), organic field-effect transistors(OFETs), organic and dye-sensitized solar cells, batteries, thermoelectric conversion devices, etc. However, as far as we know, there has never been a systemic collection and analysis of the application of radical molecules in PSCs. Herein, we summarized the role of the radical molecule on perovskite(passivate trap defects, enhance oxygen stability and make perovskite band-bending) and charge transport layer(improve conductivity and mobility, enhance oxygen stability, modulate work function and decrease by-product generating). Meanwhile, future directions of making full use of radical molecules in improving the performances of PSCs were envisioned.

Keywords

Radical molecule / Perovskite solar cell / Unpaired single electron / Modulate W F

Cite this article

Download citation ▾
Can Wang, Peng Gao. ‘Radicalize’ the Performance of Perovskite Solar Cells with Radical Compounds. Chemical Research in Chinese Universities, 2023, 39(2): 176-186 DOI:10.1007/s40242-023-2327-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

NREL, https://www.nrel.gov/pv/cellefficiency.html

[2]

Jena A K, Kulkarni A, Miyasaka T. Chem. Rev., 2019, 119: 3036.

[3]

Li H, Zhang W. Chem. Rev., 2019, 120: 9835.

[4]

Gao P, Grätzel M, Nazeeruddin M K. Energy Environ. Sci., 2014, 7: 2448.

[5]

Gao P, Grätzel M, Nazeeruddin M K, Nozik A J, Conibeer G, Beard M C, Gao P, Grätzel M, Nazeeruddin M K, Gra M, Ginley D, Okada Y, Van-Sark W, Bett A, Glunz S, Gessert T, Peter L M, Nazeeruddin M K, Park N-G, Zaban A. Advanced Concepts in Photovoltaics, 2014.

[6]

Li Z, Yang M, Park J S, Wei S H, Berry J J, Zhu K. Chem. Mater., 201, 28: 284.

[7]

Oyaizu K, Nishide H. Adv. Mater., 2009, 21: 2339.

[8]

Kushida T, Shirai S, Ando N, Okamoto T, Ishii H, Matsui H, Yamagishi M, Uemura T, Tsurumi J, Watanabe S, Takeya J, Yamaguchi S. J. Am. Chem. Soc., 2017, 139: 14336.

[9]

Bobet A, Cuadrado A, Fajarí L, Sirés I, Brillas E, Almajano M P, Jankauskas V, Velasco D, Juliá L. J. Phys. Org. Chem., 2019, 32: e3974.

[10]

Ji L, Shi J, Wei J, Yu T, Huang W. Adv. Mater., 2020, 32: 1908015.

[11]

Hicks R G. Org. Biomol. Chem., 2007, 5: 1321.

[12]

Wilcox D A, Agarkar V, Mukherjee S, Boudouris B W. Annu. Rev. Chem. Biomol. Eng., 2018, 9: 83.

[13]

Nakahara K, Oyaizu K, Nishide H. Chem. Lett., 2011, 40: 222.

[14]

Deng L, Liu Y, Zhang Y, Wang S, Gao P. Adv. Funct. Mater., 2022 2210770.

[15]

Feng X X, Wei J, Li X, Zhang W, Zhao X, Lu C, Guo X, Fang J. ACS Appl. Mater. Inter., 2021, 13: 46627.

[16]

Peng Q, Zheng X, Zhang X, You S, Li L, Zhao Y, Zhang S, Luo L, Zeng H, Li X. Front. Chem., 2020, 8: 825.

[17]

Suga T, Ohshiro H, Ugita S, Oyaizu K, Nishide H. Adv. Mater., 2009, 21: 1627.

[18]

Sato K, Ichinoi R, Mizukami R, Serikawa T, Sasaki Y, Lutkenhaus J, Nishide H, Oyaizu K. J. Am. Chem. Soc., 2018, 140: 1049.

[19]

Suwa K, Oyaizu K, Segawa H, Nishide H. ChemSusChem, 2019, 12: 5207.

[20]

Aristidou N, Sanchez-Molina I, Chotchuangchutchaval T, Brown M, Martinez L, Rath T, Haque S A. Angew. Chemie, 2015, 127: 8326.

[21]

Zeng H, Zhao Y, Wang X, Lin X, Guo R, Li L, Zhou Y, You S, Zhang S, Luo L, Liu F, Boshta M, Liang W, Li X. Chem. Eng. J., 2022, 435: 134867.

[22]

Jiang Q, Ni Z, Xu G, Lin Y, Rudd P N, Xue R, Li Y, Li Y, Gao Y, Huang J. Adv. Mater., 2020, 32: 2001581.

[23]

Niu Y, Peng Y, Zhang X, Ren Y, Ghadari R, Zhu J, Tulloch G, Zhang H, Falaras P, Hu L. ACS Energy Lett., 2022, 7: 3104.

[24]

Wei P, Oh J H, Dong G, Bao Z. J. Am. Chem. Soc., 2010, 132: 8852.

[25]

Cho N, Yip H L, Davies J A, Kazarinoff P D, Zeigler D F, Durban M M, Segawa Y, Malley K M, Luscombe C K, Jen A K Y. Adv. Energy Mater., 2011, 1: 1148.

[26]

Chen H, Zhan Y, Xu G, Chen W, Wang S, Zhang M, Li Y, Li Y. Adv. Funct. Mater., 2020, 30: 2001788.

[27]

Huang Z, Wei M, Proppe A H, Chen H, Chen B, Hou Y, Ning Z, Sargent E. Adv. Funct. Mater., 2021, 31: 2010572.

[28]

Chen J, Park N G. ACS Energy Lett., 2020, 5: 2742.

[29]

Bin Z, Li J, Wang L, Duan L. Energy Environ. Sci., 201, 9: 3424.

[30]

Xu J, Buin A, Ip A H, Li W, Voznyy O, Comin R, Yuan M, Jeon S, Ning Z, McDowell J J, Kanjanaboos P, Sun J P, Lan X, Quan L N, Kim D H, Hill I G, Maksymovych P, Sargent E H. Nat. Commun., 2015, 6: 7018.

[31]

Schlitz R A, Brunetti F G, Glaudell A M, Miller P L, Brady M A, Takacs C J, Hawker C J, Chabinyc M L. Adv. Mater., 2014, 26: 2825.

[32]

Wang Z, McMeekin D P, Sakai N, van Reenen S, Wojciechowski K, Patel J B, Johnston M B, Snaith H J. Adv. Mater., 2017, 29: 1604186.

[33]

Schloemer T H, Christians J A, Luther J M, Sellinger A. Chem. Sci., 2019, 10: 1904.

[34]

Hu B, Zhang J, Yang Y, Wang J, Wang W, Li J, Liu S, Xia D, Lin K, Dong Y, Fan R. ACS Appl. Mater. Inter., 2022, 14: 17610.

[35]

Walzer K, Maennig B, Pfeiffer M, Leo K. Chem. Rev., 2007, 107: 1233.

[36]

Lüssem B, Keum C M, Kasemann D, Naab B, Bao Z, Leo K. Chem. Rev., 201, 116: 13714.

[37]

Nguyen W H, Bailie C D, Unger E L, McGehee M D. J. Am. Chem. Soc., 2014, 136: 10996.

[38]

Abate A, Leijtens T, Pathak S, Teuscher J, Avolio R, Errico M E, Kirkpatrik J, Ball J M, Docampo P, McPherson I, Snaith H J. Phys. Chem. Chem. Phys., 2013, 15: 2572.

[39]

Forward R L, Chen K Y, Weekes D M, Dvorak D J, Cao Y, Berlinguette C P. ACS Energy Lett., 2019, 4: 2547.

[40]

Namatame M, Yabusaki M, Watanabe T, Ogomi Y, Hayase S, Marumoto K. Appl. Phys. Lett., 2017, 110: 123904.

[41]

Schloemer T H, Gehan T S, Christians J A, Mitchell D G, Dixon A, Li Z, Zhu K, Berry J J, Luther J M, Sellinger A. ACS Energy Lett., 2019, 4: 473.

[42]

Leijtens T, Giovenzana T, Habisreutinger S N, Tinkham J S, Noel N K, Kamino B A, Sadoughi G, Sellinger A, Snaith H J. ACS Appl. Mater. Inter., 201, 8: 5981.

[43]

Liang W, Xu L, Sun S, Lan L, Qiu X, Chen R, Li Y. ACS Sustain. Chem. Eng., 2017, 5: 460.

[44]

Huang J, Wang K X, Chang J J, Jiang Y Y, Xiao Q S, Li Y. J. Mater. Chem. A, 2017, 5: 13817.

[45]

Xue Q, Liu M, Li Z, Yan L, Hu Z, Zhou J, Li W, Jiang X F, Xu B, Huang F, Li Y, Yip H L, Cao Y. Adv. Funct. Mater., 2018, 28: 14.

[46]

Wang C, Li Y, Zhang C, Shi L, Tong S, Guo B, Zhang J, He J, Gao Y, Su C, Yang J. J. Power Sources, 2018, 390: 134.

[47]

Zhang Y, Huang B, Hu M, Tan B, Huang F, Cheng Y B, Simonov A N, Lu J. J. Mater. Chem. A, 2022, 10: 10604.

[48]

Wang C., Gao Y., Qiu Z., Sun P., Shibayama N., CCS Chem., https://doi.org/10.31635/ccschem.022.202202433

[49]

Zhang T, Wang F, Kim H B, Choi I W, Wang C, Cho E, Konefal R, Puttisong Y, Terado K, Kobera L, Chen M, Yang M, Bai S, Yang B, Suo J, Yang S C, Liu X, Fu F, Yoshida H, Chen W M, Brus J, Coropceanu V, Hagfeldt A, Brédas J L, Fahlman M, Kim D S, Hu Z, Gao F. Science, 2022, 377: 495.

[50]

Zhang W, Wang L, Guo Y, Zhang B, Leandri V, Xu B, Li Z, Gardner J M, Sun L, Kloo L. Chem. Commun., 2020, 56: 1589.

[51]

Chu T, Liu Y. Org. Electron., 2018, 53: 165.

[52]

Christians J A, Schulz P, Tinkham J S, Schloemer T H, Harvey S P, de Villers B J T, Sellinger A, Berry J J, Luther J M. Nat. Energy, 2018, 3: 68.

[53]

Gao L, Schloemer T H, Zhang F, Chen X, Xiao C, Zhu K, Sellinger A, Zhu K. ACS Appl. Energy Mater., 2020, 3: 4492.

[54]

Xia J, Zhang Y, Xiao C, Brooks K G, Chen M, Luo J, Yang H, Klipfel N I D, Zou J, Shi Y, Yao X, Chen J, Luther J M, Lin H, Asiri A M, Jia C, Nazeeruddin M K. Joule, 2022, 6: 1689.

[55]

Xia J, Zhang R, Luo J, Yang H, Shu H, Malik H A, Wan Z, Shi Y, Han K, Wang R, Yao X, Jia C. Nano Energy, 2021, 85: 106018.

[56]

Wang T, Zhang Y, Kong W, Qiao L, Peng B, Shen Z, Han Q, Chen H, Yuan Z, Zheng R, Yang X. Science, 2022, 377: 1227.

[57]

Lu Y, Yu Z, Un H, Yao Z, You H, Jin W, Li L, Wang Z, Dong B, Barlow S, Longhi E, Di C, Zhu D, Wang J, Silva C, Marder S R, Pei J. Adv. Mater., 2021, 33: 2005946.

[58]

Yuen J D, Wang M, Fan J, Sheberla D, Kemei M, Banerji N, Scarongella M, Valouch S, Pho T, Kumar R, Chesnut E C, Bendikov M, Wudl F. J. Polym. Sci. Part A: Polym. Chem., 2015, 53: 287.

[59]

Ward R L, Weissman S I. J. Am. Chem. Soc., 1957, 79: 2086.

[60]

Zhang Y, Basel T P, Gautam B R, Yang X, Mascaro D J, Liu F, Vardeny Z V. Nat. Commun., 2012, 3: 1043.

[61]

Li Y, Li Y, Li L, Wu Y. J. Phys. Chem. C, 2017, 121: 8579.

[62]

Chen Z, Li W, Zhang Y, Wang Z, Zhu W, Zeng M, Li Y. J. Phys. Chem. Lett., 2021, 12: 9783.

[63]

Cai C, Yao J, Chen L, Yuan Z, Zhang Z G, Hu Y, Zhao X, Zhang Y, Chen Y, Li Y. Angew. Chemie-Int. Ed., 2021, 60: 19053.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/