Ball-milling Synthesis of Single-atom Cu Anchored on N-Doped Carbon for Mimicking Peroxidase

Henan Xu , Lingling Zhang , Huilin Wang , Shaopeng Zhang , Wei Li , Xiao Wang , Shuyan Song , Daguang Wang , Zhan Shi

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 948 -953.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 948 -953. DOI: 10.1007/s40242-023-2305-0
Article

Ball-milling Synthesis of Single-atom Cu Anchored on N-Doped Carbon for Mimicking Peroxidase

Author information +
History +
PDF

Abstract

Nanozymes have shown great potential for life sciences owing to their distinct advantages, such as low cost and high stability, compared with natural enzymes. Despite significant progress, state-of-art nanozymes commonly suffer from relatively low specific activities. Herein, we propose a promising to address this issue by creating single-atom nanozymes. A ball-milling-assisted strategy has been developed to induce the transformation of Cu species from bulk to single atoms. The highly-simplified steps allow a large-scale synthesis, that over 4.2 g of single-atom Cu−N doped carbon nanozymes can be achieved in one pot. It exhibits a remarkably improved peroxidase-like activity and stability compared with N doped C anchored Cu nanoparticles. Further experimental firmly reveals the crucial role of the single-atom Cu site that can generate more active ·OH species for boosting the catalytic process.

Keywords

Nanozyme / Peroxidase-like activity / Single atom / Catalyst

Cite this article

Download citation ▾
Henan Xu, Lingling Zhang, Huilin Wang, Shaopeng Zhang, Wei Li, Xiao Wang, Shuyan Song, Daguang Wang, Zhan Shi. Ball-milling Synthesis of Single-atom Cu Anchored on N-Doped Carbon for Mimicking Peroxidase. Chemical Research in Chinese Universities, 2023, 39(6): 948-953 DOI:10.1007/s40242-023-2305-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nazor J, Liu J, Huisman G. Curr. Opin. Biotechnol., 2021, 69: 182.

[2]

Fasim A, More V S, More S S. Curr. Opin. Biotechnol., 2021, 69: 68.

[3]

Mehta D, Satyanarayana T. Front. Microbiol., 201, 7: 1129.

[4]

Hou L, Jiang G, Sun Y, Zhang X, Huang J, Liu S, Lin T, Ye F, Zhao S. Catalysts, 2019, 9: 1057.

[5]

Qiu Y, Tan G, Fang Y, Liu S, Zhou Y, Kumar A, Trivedi M, Liu D, Liu J. New J. Chem., 2021, 45: 20987.

[6]

Huang Y, Ren J, Qu X. Chem. Rev., 2019, 119: 4357.

[7]

Zhang R, Fan K, Yan X. Sci. China Life Sci., 2020, 63: 1183.

[8]

Cao Y, Liu J, Zou L, Ye B, Li G. Anal. Chim. Acta, 2021, 1145: 46.

[9]

Chen Y, Wang P, Hao H, Hong J, Li H, Ji S, Li A, Gao R, Dong J, Han X, Liang M, Wang D, Li Y. J. Am. Chem. Soc., 2021, 143: 1864.

[10]

Ma W, Xue Y, Guo S, Jiang Y, Wu F, Yu P, Mao L. Chem. Commun., 2020, 56: 5115.

[11]

Ma Y, Tian Z, Zhai W, Qu Y. Nano Res., 2022, 15: 10328.

[12]

Presutti D, Agarwal T, Zarepour A, Celikkin N, Hooshmand S, Nayak C, Ghomi M, Zarrabi A, Costantini M, Behera B, Maiti T K. Materials, 2022, 15: 337.

[13]

Jones J X H, DeLaRiva A T, Peterson E J, Pham H, Challa S R, Qi G, Oh S, Wiebenga M H, Pereira Hernández X I, Wang Y, Datye A K. Science, 201, 353: 150.

[14]

Sha M, Xu W, Wu Z, Gu W, Zhu C. Chem. J. Chinese Universities, 2022, 43(5): 20220077.

[15]

Xu S, Yin H, Xue D, Xia H, Zhao S, Yan W, Mu S, Zhang J. Chem. J. Chinese Universities, 2022, 43(5): 20220028.

[16]

Zhuang J, Wang D. Chem. J. Chinese Universities, 2022, 43(5): 20220043.

[17]

Zhang H, Chen W, Zhao M, Ma C, Han Y. Chem. J. Chinese Universities, 2022, 43(5): 20220129.

[18]

Lu B, Liu Q, Chen S. ACS Cat., 2020, 10: 7584.

[19]

Wang B, Cai H, Shen S. Small Methods, 2019, 3: 1800447.

[20]

Zhang Q, Guan J. Adv. Funct. Mater., 2020, 30: 2000768.

[21]

Chen Y, Wang P, Hao H, Hong J, Li H, Ji S, Li A, Gao R, Dong J, Han X, Liang M, Wang D, Li Y. J. Am. Chem. Soc., 2021, 143: 18643.

[22]

Chen Y, Jiao L, Yan H, Xu W, Wu Y, Zheng L, Gu W, Zhu C. Anal. Chem., 2021, 93: 12353.

[23]

Xu B, Wang H, Wang W, Gao L, Li S, Pan X, Wang H, Yang H, Meng X, Wu Q, Zheng L, Chen S, Shi X, Fan K, Yan X, Liu H. Angew. Chem. Int. Ed., 2019, 58: 4911.

[24]

Ma B, Wang S, Liu F, Zhang S, Duan J, Li Z, Kong Y, Sang Y, Liu H, Bu W, Li L. J. Am. Chem. Soc., 2019, 141: 849.

[25]

Zhang L, Chen C, Zhou J, Yang G, Wang J, Liu D, Chen Z, Lei W. Adv. Funct. Mater., 2020, 30: 2004139.

[26]

Wang H, Wang X, Pan J, Zhang L, Zhao M, Xu J, Liu B, Shi W, Song S, Zhang H. Angew. Chem. Int. Ed., 2021, 60: 23154.

[27]

Lyu Z, Zhu S, Xie M, Zhang Y, Chen Z, Chen R, Tian M, Chi M, Shao M, Xia Y. Angew. Chem. Int. Ed., 2021, 60: 1909.

[28]

Khanna P K, Gaikwad S, Adhyapak P V, Singh N, Marimuthu R. Mater. Lett., 2007, 61: 4711.

[29]

Ismail M I M. Mater. Chem. Phy., 2020, 240: 122283.

[30]

Ferrah D, Haines A R, Galhenage R P, Bruce J P, Babore A D, Hunt A, Waluyo I, Hemminger J C. ACS Cat., 2019, 9: 6783.

[31]

Ghodselahi T, Vesaghi M A, Shafiekhani A, Baghizadeh A, Lameii M. Appl. Surf. Sci., 2008, 255: 2730.

[32]

Halder A, Lenardi C, Timoshenko J, Mravak A, Yang B, Kolipaka L K, Piazzoni C, Seifert S, Bonačić-Koutecký V, Frenkel A I, Milani P, Vajda S. ACS Cat., 2021, 11: 6210.

[33]

Altuner E E, Ozalp V C, Yilmaz M D, Bekmezci M, Sen F. Chemosphere, 2022, 292: 133429.

[34]

Li Y Z, Li T T, Chen W, Song Y Y. ACS Appl. Mater. Interfaces, 2017, 9: 29881.

[35]

Shi R, He Q, Cheng S, Chen B, Wang Y. New J. Chem., 2021, 45: 18048.

[36]

Han S K, Hwang T M, Yoon Y, Kang J W. Chemosphere, 2011, 84: 1095.

[37]

Wang N, Liu Y, Wu C, Li S, Sun B, Ren Z, Yi X, Han X, Du Y, Wang J. Chem. Eng. J., 2022, 439: 135682.

AI Summary AI Mindmap
PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/