M xCo3O4/g-C3N4 Derived from Bimetallic MOFs/g-C3N4 Composites for Styrene Epoxidation by Synergistic Photothermal Catalysis

Fengdi Ren , Qiqin Gao , Yuzhen Chen

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6) : 1361 -1367.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6) : 1361 -1367. DOI: 10.1007/s40242-022-2292-6
Article

M xCo3O4/g-C3N4 Derived from Bimetallic MOFs/g-C3N4 Composites for Styrene Epoxidation by Synergistic Photothermal Catalysis

Author information +
History +
PDF

Abstract

Although metal-organic frameworks(MOFs) have been widely reported as precursors for obtaining various porous materials in recent years, the limited MOF types and monofunctional active site of MOF-based catalysts remain to be hard to crack. Herein, bimetallic MOFs, MCo-ZIFs stabilized by graphitized carbon nitride(g-C3N4) and their pyrolytic M xCo3O4/g-C3N4 hybrids(M=Zn, Cu, Fe, Ni) have been designedly synthesized. The obtained M xCo3O4/g-C3N4 hybrids display synergistic photothermal effect from both M xCo3O4 and g-C3N4 under visible light irradiation. Significantly, the solution temperature can be heated from room temperature(20 °C) to 66 °C after 40 min irradiation. Therefore, the catalytic activity of M xCo3O4/g-C3N4 exceeds those of most reported catalysts under mild reaction conditions. The optimal Zn xCo3O4/g-C3N4 catalyst realizes 96% conversion and 75% selectivity toward styrene oxide within 20 min. Incredibly, the Cu xCo3O4/g-C3N4 could achieve up to 89% selectivity toward styrene oxide. To our knowledge, this is the first report about the novel photothermal effect of ZIFs-derived metal oxides.

Keywords

Metal-organic framework / Pyrolysis / Photothermal effect / Styrene epoxidation

Cite this article

Download citation ▾
Fengdi Ren, Qiqin Gao, Yuzhen Chen. M xCo3O4/g-C3N4 Derived from Bimetallic MOFs/g-C3N4 Composites for Styrene Epoxidation by Synergistic Photothermal Catalysis. Chemical Research in Chinese Universities, 2022, 38(6): 1361-1367 DOI:10.1007/s40242-022-2292-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tian S, Wang B, Gong W, He Z, Xu Q, Chen W, Zhang Q, Zhu Y, Yang J, Fu Q, Chen C, Bu Y, Gu L, Sun X, Zhao H, Wang D, Li Y. Nat. Commun., 2021, 12: 1.

[2]

Punniyamurthy T, Velusamy S, Iqbal J. Chem. Rev., 2005, 105: 2329.

[3]

Hu L, Yue B, Wang C, Chen X, He H. Applied Catalysis A: General, 2014, 477: 141.

[4]

Liu J, Meng R, Li J, Jian P, Wang L, Jian R. Appl. Catal. B: Environ., 2019, 254: 214.

[5]

Liu Y, Tsunoyama H, Akita T, Tsukuda T. Chem. Commun., 2010, 46: 550.

[6]

Choudhary V, Dumbre D, Patil N, Uphade B, Bhargava S. J. Catal., 2013, 300: 217.

[7]

Zhang D., Li H., Li G., Chen J., Dalton. Trans., 2009, 10527

[8]

Patil N, Uphade B, McCulloh D, Bhargava S, Choudhary V. Catal. Commun., 2004, 5: 681.

[9]

Hu X, Bai J, Hong H, Li C. Micropor. Mesopor. Mater., 201, 228: 224.

[10]

Moon H, Limb A, Suh M. Chem. Soc. Rev., 2013, 42: 673.

[11]

Zhou H, Kitagawab S. Chem. Soc. Rev., 2014, 43: 5415.

[12]

Lee J, Farha O, Roberts J, Scheidt K, Hupp S. Chem. Soc. Rev., 2009, 38: 1450.

[13]

Liu W, Huang J, Yang Q, Wang S, Sun X, Zhang W, Liu J, Huo F. Angew. Chem. Int. Ed., 2017, 56: 5512.

[14]

Yu M, Space B, Franz D, Zhou W, He C, Li L, Krishna R, Chang Z, Li W, Hu T, Bu X. J. Am. Chem. Soc., 2019, 141: 17703.

[15]

Bao S, Li J, Guan B, Jia M, Terasaki O, Yu J. Matter, 2020, 3: 498.

[16]

Wen Y, Rentería-Gómez Á, Day G, Smith M, Yan T, Ozdemir R, Gutierrez O, Sharma V, Ma X, Zhou H. J. Am. Chem. Soc., 2022, 144: 11840.

[17]

Corma A, García H, Llabrés I. Chem. Rev., 2010, 110: 4606.

[18]

Gao J, Huang Q, Wu Y, Lan Y, Chen B. Adv. Energy. Sustain. Res., 2021, 2: 2100033.

[19]

Wang L, Li S, Chen Y, Jiang H. Small, 2021, 17: 2004481.

[20]

Sumida K, Rogow D, Mason J, McDonald T, Bloch E, Herm Z, Bae T, Long J. Chem. Rev., 2012, 112: 724.

[21]

Lee Y, Moon H, Cheon Y, Suh M. Angew. Chem. Int. Ed., 2008, 47: 7741.

[22]

Jaechul L, Chong Y, Jaheon K, Youngsuk K, Nakeun K, Seo Y, Kimoon K, Tae H, Lee E. Angew. Chem. Int. Ed., 2018, 57: 7869.

[23]

Kim E, Siegelman R, Jiang H, Forse A, Lee J, Martell J, Milner P, Falkowski J, Neaton J, Reimer J, Weston S, Long J. Science, 2020, 369: 392.

[24]

Zhang Z, Wang H, Li Y, Xie M, Li C, Lu H, Peng Y, Shi Z. Chem. Res. Chinese Universities, 2022, 38(4): 750.

[25]

Li S, Gao Y, Li N, Ge L, Bu X, Feng P. Energy Environ. Sci., 2021, 14: 1897.

[26]

Kaneti Y, Tang J, Salunkhe R, Jiang X, Yu A, Wu K, Yamauchi Y. Adv. Mater., 2017, 29: 1604898.

[27]

Gu Z, Li D, Zheng C, Kang Y, Wöll C, Zhang J. Angew. Chem. Int. Ed., 2017, 56: 6853.

[28]

Cao X, Tan C, Sindoro M, Zhang H. Chem. Soc. Rev., 2017, 46: 2660.

[29]

Lide O, Tim W, Xiao H, Kapteijn F, Gascon J. Mater. Chem. Front., 2017, 1: 1709.

[30]

Ma S, Goenaga G, Call A, Liu D. Chem. Eur. J., 2011, 17: 2063.

[31]

Hu M, Reboul J, Furukawa S, Torad N, Ji Q, Srinivasu P, Ariga K, Kitagawa S, Yamauchi Y. J. Am. Chem. Soc., 2012, 134: 2864.

[32]

Jiao L, Wan G, Zhang R, Zhou H, Yu S, Jiang H. Angew. Chem. Int. Ed., 2018, 57: 8525.

[33]

Shah S, Najam T, Wen M, Zang S, Waseem A, Jiang H. Small. Struct., 2022, 3: 2100090.

[34]

Jiao L, Zhang R, Wan G, Yang W, Wan X, Zhou H, Shui J, Yu S, Jiang H. Nat. Commun., 2020, 11: 2831.

[35]

Srinivas G, Krungleviciute V, Guo Z, Yildirim T. Energy Environ. Sci., 2014, 7: 335.

[36]

Kung C, Goswami S, Hod I, Wang T, Duan J, Farha O, Hupp J. Acc. Chem. Res., 2020, 53: 1187.

[37]

Jiang H, Liu B, Lan Y, Kuratani K, Akita T, Shioyama H, Zong F, Xu Q. J. Am. Chem. Soc., 2011, 133: 11854. 31

[38]

Zhang T, Lin W. Chem. Soc. Rev., 2014, 43: 5982.

[39]

Liu B, Shioyama H, Akita T, Xu Q. J. Am. Chem. Soc., 2008, 130: 5390.

[40]

Wang F, Li C, Chen H, Jiang R, Sun L, Li Q, Wang J, Yu J, Yan C. J. Am. Chem. Soc., 2013, 135: 5588.

[41]

Song S, Wang X, Li S, Wang Z, Zhu Q, Zhang H. Chem Sci., 2015, 6: 6420.

[42]

Zhang W, Wu Z, Jiang H, Yu S. J. Am. Chem. Soc., 2014, 136: 14385.

[43]

Zhi G, Yu X, Zhao D. Chem. Soc. Rev., 2021, 50: 4629.

[44]

Tang J, Salunkhe R, Liu J, Torad N, Imura M, Furukawa S, Yamauchi Y. J. Am. Chem. Soc., 2015, 137: 1572.

[45]

Xiao C, Lin Y, Zhang J, Chen X. Angew. Chem. Int. Ed., 200, 45: 1557.

[46]

Li B, Liu J, Liu Q, Chen R, Zhang H, Yu J, Song D, Li J, Zhang M, Wang J. Appl. Surf. Sci., 2019, 475: 700.

[47]

Chen Y, Wang C, Wu Z, Xiong Y, Xu Q, Yu S, Jiang H. Adv. Mater., 2015, 27: 5010.

[48]

Zheng F, Yang Y, Chen Q. Nat. Commun., 2014, 5: 5261.

[49]

Zhang S, Guan B, Lu X, Xi S, Du Y, Lou X. Adv. Mater., 2020, 32: 2002235.

[50]

Rabani I, Zafar R, Subalakshmi K, Kim H, Bathula C, Seo Y. J. Hazard. Mater., 2021, 407: 124360.

[51]

Su T, Lu G, Sun K, Zhang M, Cai C. Catal. Sci. Technol., 2022, 12: 216.

[52]

Han Y, Li J, Zhang T, Qi P, Li S, Gao X, Zhou J, Feng X, Wang B. Chem. Eur. J., 2018, 24: 1651.

[53]

Guo J, Wan Y, Zhu Y, Zhao M, Tang Z. Nano. Res., 2021, 14: 2037.

[54]

Hao Y, Chen L, Li J, Guo Y, Su X, Shu M, Zhang Q, Gao W, Li S, Yu Z, Gu L, Feng X, Yin A, Si R, Zhang Y, Wang B, Yan C. Nat. Commun., 2021, 12: 2682.

[55]

Jain P, Huang X, El-Sayed I, El-Sayed M. Acc. Chem. Res., 2008, 41: 1578.

[56]

Yang Q, Xu Q, Yu S, Jiang H. Angew. Chem. Int. Ed., 201, 55: 3785.

[57]

Linic S, Aslam U, Boerigter C, Morabito M. Nat. Mater., 2015, 14: 567.

[58]

Wang Y, Liu L, Ma T, Zhang Y, Huang H. Adv. Funct. Mater., 2021, 31: 2102540.

[59]

Ismael M. J. Alloy. Compd., 2020, 846: 156446.

[60]

Huang T, Fu Y, Peng Q, Yu C, Zhu J, Yu A, Wang X. Appl. Surf. Sci., 2019, 480: 888.

[61]

Liu J, Wang H, Antonietti M. Chem. Soc. Rev., 201, 45: 2308.

[62]

Liu X, Yang W, Chen L, Liu Z, Long L, Wang S, Liu C, Dong S, Jia J. ACS Appl. Mater. Inter., 2020, 12: 4463.

[63]

Bi L, Xu D, Zhang L, Lin Y, Wang D, Xie T. Phys. Chem. Chem. Phys., 2015, 17: 29899.

[64]

Wang Y, Wang X, Antonietti M. Angew. Chem. Int. Ed., 2012, 51: 68.

[65]

Yang L, Liu J, Yang L, Zhang M, Zhu H, Wang F, Yin J. Renew. Energ., 2020, 145: 691.

[66]

Liu D, Chen D, Li N, Xu Q, Li H, He J, Lu J. Small, 2019, 15: 1902291.

[67]

Gu W, Hu L, Li J, Wang E. ACS. Appl. Mater. Inter., 201, 8: 35281.

[68]

Wang R, Yan T, Han L, Chen G, Li H, Zhang J, Shi L, Zhang D. J. Mater. Chem. A, 2013, 6: 5752.

[69]

Zhu Z, Chen C, Wu R. J. Chin. Chem. Soc., 2020, 67: 1654.

[70]

Luo D, Liu S, Liu J, Zhao J, Miao C, Ren J. Ind. Eng. Chem. Res., 2018, 57: 11920.

[71]

Muniandy L, Adam F, Mohamed A, Iqbal A, Rahman N. Appl. Surf. Sci., 2017, 398: 43.

[72]

Cao S, Low J, Yu J, Jaroniec M. Adv. Mater., 2015, 27: 2150.

[73]

Zhou Q, Zhang Z, Cai J, Liu B, Zhang Y, Gong X, Sui X, Yu A, Zhao L, Wang Z, Chen Z. Nano Energy, 2020, 71: 104592.

[74]

Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi O. Science, 2008, 319: 939.

[75]

Wang P, Zhang X, Shi R, Zhao J, Yuan Z, Zhang T. Energy Fuels, 2022, 36: 11627.

[76]

Chen H, Shi R, Zhang T. Molecules, 2021, 26: 7552.

[77]

Li Y, Li R, Li Z, Xu Y, Yuan H, Ouyang S, Zhang T. Solar RRL, 2022, 6: 2200493.

[78]

Wang Y, Wu X, Shao B, Yang X, Owens G, Xu H. Sci. Bull., 2020, 65: 1380.

[79]

Bastienne B., Patricia A., Feiters M., Nolte R., J. Chem. Soc., Dalton Trans., 1998, 2241

[80]

Gansäuer A, Lauterbach T, Narayan S. Angew. Chem. Int. Ed., 2003, 42: 5556.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/