Multi-fluorous-included Counter Anions-based Ionic Copolymers: Synthesis and Enhanced Hydrophobic Adsorption Films on Copper Surface for Super Protection

Weihua Ren , Yueting Shi , Lingli Chen , Song Yang , Shengtao Zhang , Xiaohong Liu , Xiaolei Ren , Hongru Li

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (5) : 845 -856.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (5) : 845 -856. DOI: 10.1007/s40242-022-2276-6
Article

Multi-fluorous-included Counter Anions-based Ionic Copolymers: Synthesis and Enhanced Hydrophobic Adsorption Films on Copper Surface for Super Protection

Author information +
History +
PDF

Abstract

Three multi-fluorous-carried anions-based ionic copolymers (ICs) including (fluorosulfonyl)imide(FSI), (trifluoromethanesulfonyl)imide(TFSI) and hexafluorophosphate anions(PF6 ) (IC[FSI]; poly[1,1′-(butane-1,4-diyl)bis(3-pentyl-1H-imidazol-3-ium) bis(fluorosulfonyl)amide](IC[TFSI]), poly{1,1′-(butane-1,4-diyl)bis(3-pentyl-1H-imidazol-3-ium) bis[(trifluoromethyl)sulfonyl]-amide}(IC[PF6]), poly[1,1′-(butane-1,4-diyl)bis(3-pentyl-1H-imidazol-3-ium) bishexafluorophosphate] were synthesized with a simple ionic exchange method by using amphiphilic poly[1,1′-(butane-1,4-diyl)bis(3-pentyl-1H-imidazol-3-ium) bisbromide] (IC[Br]) as the intermediate ionic polymer. The chemical srutrcures of the target ICs were characterized by nuclear magnetic resonance (NMR) spectroscopy and Fourier-transform infrared spectroscopy (FTIR). It is shown that the target ICs could be spontaneously adsorbed on copper surface in N,N-dimethflormamide(DMF), and the tight adsorption films were formed on metal surface. The contacting angles suggest that the formed adsorption layers of target ICs on copper surface were characterized with hydrophobic nature. Furthermore, the target ICs-copper chemistry bonding was confirmed by various means. The electrochemistry analysis showed that the target ICs adsorption layers could prevent from copper corrosion in H2SO4 solution efficiently, and the maximal anticorrosion efficiency was over 95% at 0.100 g/L. In particular, the target ICs showed 85% or above anticorrosion efficiency for copper at a low concentration of 0.025 g/L, which was greater than the intermediate polymer IC[Br]. In addition, an insight of mixed chemisorption and physisorption of the target ICs on metal surface was analyzed and discussed.

Keywords

Hydrophobic adsorption film / Ionic copolymer / Multifluorous-included anion / Copper / Anticorrosion

Cite this article

Download citation ▾
Weihua Ren, Yueting Shi, Lingli Chen, Song Yang, Shengtao Zhang, Xiaohong Liu, Xiaolei Ren, Hongru Li. Multi-fluorous-included Counter Anions-based Ionic Copolymers: Synthesis and Enhanced Hydrophobic Adsorption Films on Copper Surface for Super Protection. Chemical Research in Chinese Universities, 2023, 39(5): 845-856 DOI:10.1007/s40242-022-2276-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lu Y, Das S K, Moganty S S, Archer A. Adv. Mater., 2012, 24(32): 4430.

[2]

Williams S R, Long T E. Prog. Polym. Sci., 2009, 34(8): 762.

[3]

Wright A G, Holdcroft S. ACS Macro Lett., 2014, 3(5): 444.

[4]

Olsson J S, Pham T H, Jannasch P. Macromolecules, 2017, 50(7): 2784.

[5]

Williams S R, Borgerding E M, Layman J M, Wang W, Winey K I. Macromolecules, 2008, 41(14): 5216.

[6]

Hu Z, Vatamanu J, Borodin O, Bedrov D. Electrochimica Acta, 2014, 145: 40.

[7]

Dilasari B, Jung Y, Sohn J, Kim S, Kwon K. Ele. Sci., 201, 11(1): 1482.

[8]

Fernicola A, Scrosati B, Ohno H. Ionics, 200, 12: 95.

[9]

Pieczonka N P W, Yang L, Balogh M P. J. Phys. Chem. C, 2013, 117: 22603.

[10]

Gurevitch I, Buonsanti R, Teran A A. J. Electrochem. Soc., 2013, 160: A1611.

[11]

Al-Khaldi Ihsanullah F A, Abu-Sharkh B, Abulkibash A M, Qureshi M I, Laoui T, Atieh M A. Desalin. Water. Treat., 201, 57: 7232.

[12]

Abbas Ihsanullah A, Al-Amer A M, Laoui T, Al-Marri M J, Nasser M S, Khraisheh M, Atieh M A. Separ. Pur. Tech., 201, 157: 141.

[13]

Mousavi M, Baghgoli T. Corro. Sci., 201, 105: 170.

[14]

Wang Z, Gong Y, Zhang L. Chem. Eng. J., 2018, 342: 238.

[15]

Jennings G K, Laibinis P E. Collo. Surf. A: Physicochem. Eng. Aspects, 199, 117: 45.

[16]

Murmu M, Saha S K, Murmu N C, Banerjee P. J. Mol. Liq., 2019, 278: 521.

[17]

Qiang Y, Zhang S, Zhao H. Corr. Sci., 2019, 161: 108193.

[18]

Calderón J A, Barcia O E, Mattos O R. Corr. Sci., 2008, 50(7): 2101.

[19]

Vasconcelos L W, Margarit I C P, Mattos O R, Fragata F L, Sombra A S B. Corr. Sci., 2001, 43(12): 2291.

[20]

Love J C, Estroff L A, Kriebel J K, Nuzzo R G, Whitesides G M. Chem. Rev., 2005, 105: 1103.

[21]

Behpour M, Mohammadi N. Corro. Sci., 2012, 65: 331.

[22]

Huang H J, Fu Y, Wang X, Gao Y, Wang Z, Zhang S, Li H, Gao F, Chen L Y. ACS Appl. Mater. Interf., 2019, 11: 10135.

[23]

Pareek S, Jain D, Hussain S, Biswas A, Shrivastava R, Parida S K, Kisan H K, Lgaz H, Chung I, Behera D. Chem. Eng., 2019, 358: 725.

[24]

Qiu S, Li W, Zheng W, Zha H, Wang L. ACS Appl. Mater. Interf., 2017, 9: 34294.

[25]

Smith J S, Zubatyuk R, Nebgen B, Lubbers N, Barros K, Roitberg A E, Tretiak S. Sci. Date., 2020, 7(1): 1.

[26]

Vural H, Orbay M. J. Mole. Stru., 2017, 1146: 669.

[27]

Zhang T, Sanguramath R A, Israel S, Silverstein M S. Macromolecules, 2019, 52(15): 5445.

[28]

Jang W, Choi K, Choi J S, Kim D H, Char K, Lim J, Im S G. ACS Appl. Mater., 2021, 13(51): 61629.

[29]

Lindquist B A, Corcelli S A. J. Phys. Chem. B, 2008, 112: 6301.

[30]

Zucchi F, Frignani A, Grassi V, Trabanelli G, DalColle M. Corro. Sci., 2007, 49: 1570.

[31]

Scott D W, Good W D, Waddington G. J. Am. Chem. Soc., 1955, 77: 245.

[32]

Tovstonog V A. Teplofizika Vysokikh Temperatur, 1991, 29: 268.

[33]

Jiao W, Cheng Y, Zhang J. Langmuir, 2017, 33: 13649.

[34]

Scendo M. Corro. Sci., 2008, 50: 1584.

[35]

Ahn S, Klyukin K, Wakeham R J, Rudd J, Lewis A R, Alexander S, Carla F, Alexandrov V, Andreoli E. ACS Catal., 2018, 8: 4132.

[36]

Wang Y, Lin F, Peng J, Dong Y, Huang Y. J. Mater. Chem. A, 201, 4: 10294.

[37]

Cánneva A, Giordana I S, Erra G, Calvo A. Energy Fuels, 2017, 31: 10414.

[38]

Brongersma H H, Mul P M. Chem. Phys. Lett., 1972, 14: 380.

[39]

Galvanetto E, Galliano F P, Borgioli F, Bardi U, Lavacchi A. Thin Solid Films, 2001, 384: 223.

[40]

Okpalugo T I T, Papakonstantinou P, Murphy H, Mclaughlin J, Brown N. Carbon, 2005, 43: 153.

[41]

Landoulsi J, Genet M J, Fleith S, Toure Y, Liascukiene I, Methivier C, Rouxhet P G. Appl. Surf. Sci., 201, 383: 71.

[42]

Vassallo E, Cremona A, Ghezzi F, Dellera F, Laguardia L, Ambrosone G, Coscia U. Appl. Surf. Sci., 200, 252: 7993.

[43]

Kosec T, Merl D K, Milošev I. Corro. Sci., 2008, 50: 1987.

[44]

Zhou W, Li G, Wang L, Chen Z, Lin Y. Appl. Surf. Sci., 2017, 413: 140.

[45]

Mezzi A, Angelini E, Caro T D, Grassini S, Faraldi F, Riccucci C, Ingo G M. Surf. Interface Analy., 2012, 44: 968.

[46]

Blundell R K, Licence P. Phys. Chem. Chem. Phys., 2014, 16: 15278.

[47]

Villar-Garcia I J, Smith E F, Taylor A W, Qiu F, Lovelock K R J, Jones R G, Licence P. Phys. Chem. Chem. Phys., 2011, 13: 2797.

[48]

Kolbeck C, Niedermaie I I, Deyko A, Lovelock K R J, Taccardi N, Wei W, Wasserscheid P, Maier F, Steinrück H P. Chem. Eur. J., 2014, 20: 3954.

[49]

Lou W, Cai W, Li P, Su J, Zheng S, Zhang Y, Jin W. Powder Tech., 2018, 326: 84.

[50]

Gopi D, Govindaraju K M, Prakash V C A, Sakila D M A, Kavitha L. Corro. Sci., 2009, 51: 2259.

[51]

Kowsar E, Arman S Y, Shahini M H, Zandi H, Ehsani A, Naderi R, Pourghasemi Hanza A, Mehdipour M. Corro. Sci., 201, 112: 73.

[52]

Döner A, Yüce A O, Kardaş G. Indust. Eng. Chem. Res., 2013, 52: 9709.

[53]

Benali O, Larabi L, Harek Y. J. Saudi Chem. Soc., 2010, 14: 231.

[54]

Hussin M H, Rahim A A, Ibrahim M N M, Brosse N. Measurement., 201, 78: 90.

[55]

Peng X, Xiong C, Lin Y, Zhao C, Zhao T. SmartMat, 2021, 2(4): 579.

[56]

Wu M, Li Y, Liu X, Yang S, Ma J, Dou S. SmartMat, 2021, 2(1): 5.

[57]

Liu W, Xu Q, Han J, Chen X, Min Y. Corro. Sci., 201, 110: 105.

[58]

Tan B, Zhang S, Qiang Y, Guo L, Feng L, Liao C, Xu Y, Chen S. J. Colloids Interface Sci., 2018, 526: 268.

[59]

Qiang Y, Zhang S, Yan S, Zou X, Chen S. Corro. Sci., 2017, 126: 295.

[60]

Zheng X, Zhang S, Li W, Gong M, Yin L. Corro. Sci., 2015, 95: 168.

[61]

Tan B, Zhang S, Li W, Zuo X, Chen S. J. Indus. Eng. Chem., 2019, 77: 449.

[62]

Satapathy A K, Gunasekaran G, Sahoo S C, Amit K, Rodrigues P V. Corro. Sci., 2009, 51: 2848.

[63]

Biswas A, Pal S, Udayabhanu G. Appl. Surf. Sci., 2015, 353: 173.

[64]

Malik M A, Hashim M A, Nabi F, Al-Thabaiti S A, Khan Z. Int. J. Electrochem. Sci, 2011, 6(6): 1927.

[65]

El Adnani Z, Mcharfi M, Sfaira M, Benzakour M, Benjelloun A T, Touhami M E. Corr. Sci., 2013, 68: 223.

[66]

Ma H, Chen S, Yin B, Zhao S, Liu X. Corr. Sci., 2003, 45(5): 867.

[67]

Yan T, Zhang S, Feng L. Chem. Eng., 2020, 106: 118.

[68]

Singh A, Ansari K R, Kumar A, Liu W, Songsong C, Lin Y. All. Comp., 2017, 712: 121.

[69]

Pagliaro M, Ciriminna R, Palmisano G. Mate.Chem., 2009, 19(20): 3116.

[70]

Guo X, Wang J. J. Mol. Liq., 2019, 296: 111850.

[71]

Dada AO, Olalekan A P, Olatunya A M, Dada O J I J C. Int. J. Appl. Chem., 2012, 3(1): 38.

[72]

Kolev V L, Danov K D, Kralchevsky P A, Broze G, Mehretea A. Langmuir, 2002, 18(23): 9106.

[73]

Skopp J. J. Chem. Edu., 2009, 86(11): 1341.

[74]

Biswas A, Pal S, Udayabhanu G. Appl. Surf. Sci., 2015, 353: 173.

[75]

Solomon M M, Umoren S A. J. Colloid Interface Sci., 201, 462: 29.

[76]

Pandolfo T., Ruiz V., Sivakkumar S., Nerkar J., Mater. Sys. App., 2013, 69

[77]

Mendonça G L F, Costa S N, Freire V N, Casciano P N S, Correia A N, Lima-Neto P D. Corro. Sci., 2017, 115: 41.

[78]

Duran B, Bereket G. Indus. Eng. Chem. Res., 2012, 51: 5246.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/