Polymeric Carbon Nitride-based Single Atom Photocatalysts for CO2 Reduction to C1 Products

Tianchang Miao , Xin Di , Feini Hao , Gengfeng Zheng , Qing Han

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5) : 1197 -1206.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5) : 1197 -1206. DOI: 10.1007/s40242-022-2275-7
Review

Polymeric Carbon Nitride-based Single Atom Photocatalysts for CO2 Reduction to C1 Products

Author information +
History +
PDF

Abstract

Photocatalytic CO2 reduction to C1 fuels is considered to be an important way for alleviating increasingly serious energy crisis and environmental pollution. Due to the environment-friendly, simple preparation, easy formation of highly-stable metal-nitrogen(M-N x) coordination bonds, and suitable band structure, polymeric carbon nitride-based single-atom catalysts(C3N4-based SACs) are expected to become a potential for CO2 reduction under visible-light irradiation. In this review, we summarize the recent advancement on C3N4-based SACs for photocatalytic CO2 reduction to C1 products, including the reaction mechanism for photocatalytic CO2 reduction to C1 products, the structure and synthesis methods of C3N4-based SACs and their applications toward photocatalytic CO2 reduction reaction(CO2RR) for C1 production. The current challenges and future opportunities of C3N4-based SACs for photoreduction of CO2 are also discussed.

Keywords

Photocatalytic CO2 reduction / Polymeric carbon nitride / Polymeric carbon nitride-based single-atom catalyst / C1 product

Cite this article

Download citation ▾
Tianchang Miao, Xin Di, Feini Hao, Gengfeng Zheng, Qing Han. Polymeric Carbon Nitride-based Single Atom Photocatalysts for CO2 Reduction to C1 Products. Chemical Research in Chinese Universities, 2022, 38(5): 1197-1206 DOI:10.1007/s40242-022-2275-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Francke R, Schille B, Roemelt M. Chemical Reviews, 2018, 118(9): 4631.

[2]

Jiang Z, Sun H, Wang T, Wang B, Wei W, Li H, Yuan S, An T, Zhao H, Yu J, Wong P K. Energy & Environmental Science, 2018, 11(9): 2382.

[3]

Choi J Y, Choi W, Park J W, Lim C K, Song H. Chemistry——An Asian Journal, 2020, 15(2): 253.

[4]

Moniz S J A, Shevlin S A, Martin D J, Guo Z, Tang J. Energy & Environmental Science, 2015, 8(3): 731.

[5]

Wang L M, Chen W L, Zhang D D, Du Y P, Amal R, Qiao S Z, Bf J W, Yin Z Y. Chemical Society Reviews, 2019, 48(21): 5310.

[6]

Kondratenko E V, Mul G, Baltrusaitis J, Larrazabal G O, Perez-Ramirez J. Energy & Environmental Science, 2013, 6(11): 3112.

[7]

Han Q, Zhao F, Hu C, Lv L, Zhang Z, Chen N, Qu L. Nano Research, 2015, 8(5): 1718.

[8]

Chen L, Wang Y, Wu C, Yu G, Yin Y, Su C, Xie J, Han Q, Qu L. Nanoscale, 2020, 12(25): 13484.

[9]

Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Li J, Zhang T. Nature Chemistry, 2011, 3(8): 634.

[10]

Tan X, Li H, Yang S. Chemcatchem, 2021, 13(23): 4859.

[11]

Wang W N, Soulis J, Yang Y J, Biswas P. Aerosol and Air Quality Research, 2014, 14(2): 533.

[12]

Gao C, Chen S M, Wang Y, Wang J W, Zheng X S, Zhu J F, Song L, Zhang W K, Xiong Y J. Advanced Materials, 2018, 30(13): 1704624.

[13]

Li Y Y, Ma S F, Zhou B X, Huang W Q, Fan X X, Li X F, Li K, Huang G F. Journal of Physics D: Applied Physics, 2019, 52(10): 105502.

[14]

Xiao X. D., Zhang L. P., Meng H. Y., Jiang B. J., Fu H. G., Solar Rrl, 2021, 5(6)

[15]

Ong W J, Tan L L, Ng Y H, Yong S T, Chai S P. Chemical Reviews, 201, 116(12): 7159.

[16]

Kessler F K, Zheng Y, Schwarz D, Merschjann C, Schnick W, Wang X C, Bojdys M J. Nature Reviews Materials, 2017, 2(6): e2110266.

[17]

Algara-Siller G, Severin N, Chong S Y, Bjorkman T, Palgrave R G, Laybourn A, Antonietti M, Khimyak Y Z, Krasheninnikov A V, Rabe J P, Kaiser U, Cooper A I, Thomas A, Bojdys M J. Angewandte Chemie-International Edition, 2014, 53(29): 7450.

[18]

Han Q, Wang B, Zhao Y, Hu C, Qu L. Angewandte Chemie-International Edition, 2015, 54(39): 11433.

[19]

Han Q, Cheng Z, Wang B, Zhang H, Qu L. ACS Nano, 2018, 12(6): 5221.

[20]

Yu H, Shi R, Zhao Y, Bian T, Zhao Y, Zhou C, Waterhouse G I N, Wu L, Tung C, Zhang T. Advanced Materials, 2017, 29(16): 1605148.

[21]

Wang Y, Li L, Li G. Chem. Res. Chinese Universities, 2020, 36(6): 1053.

[22]

Liang J L, Jiang Z F, Wong P K, Lee C S. Solar Rrl, 2021, 5(2): 2000478.

[23]

Li K, Peng B S, Peng T Y. ACS Catalysis, 201, 6(11): 7485.

[24]

Cao S W, Yu J G. Journal of Physical Chemistry Letters, 2014, 5(12): 2101.

[25]

Fu J W, Wang S D, Wang Z H, Liu K, Li H, Liu H, Hu J H, Xu X W, Li H M, Liu M. Frontiers of Physics, 2020, 15(3): 33201.

[26]

Wu C, Han Q, Qu L. Apl. Materials, 2020, 8(12): 120703.

[27]

Li Y R, Kong T T, Shen S H. Small, 2019, 15(32): 1900772.

[28]

Zhao M, Feng J, Yang W T, Song S Y, Zhang H J. Chemcatchem, 2021, 13(5): 1250.

[29]

Sharma P., Kumar S., Tomanec O., Petr M., Chen J. Z., Miller J. T., Varma R. S., Gawande M. B., Zboril R., Small, 2021, 17(16)

[30]

Huang P P, Huang J H, Pantovich S A, Carl A D, Fenton T G, Caputo C A, Grimm R L, Frenkel A I, Li G H. Journal of the American Chemical Society, 2018, 140(47): 16042.

[31]

Cheng L, Yin H, Cai C, Fan J J, Xiang Q J. Small, 2020, 16(28): 2002411.

[32]

Wang Y Y, Qu Y, Qu B H, Bai L L, Liu Y, Yang Z D, Zhang W, Jing L Q, Fu H G. Advanced Materials, 2021, 33(48): 2105482.

[33]

Gong Y N, Shao B Z, Mei J H, Yang W, Zhong D C, Lu T B. Nano Research, 2022, 15(1): 551.

[34]

Ma M Z, Huang Z A, Doronkin D E, Fa W J, Rao Z Q, Zou Y Z, Wang R, Zhong Y Q, Cao Y A, Zhang R Y, Zhou Y. Applied Catalysis B: Environmental, 2022, 300: 120691.

[35]

Cheng L, Yue X Y, Wang L X, Zhang D N, Zhang P, Fan J J, Xiang Q J. Advanced Materials, 2021, 33(49): 2105135.

[36]

Zhao Y, Han Z D, Gao G Y, Zhang W Y, Qu Y, Zhu H Y, Zhu P F, Wang G F. Advanced Functional Materials, 2021, 31(38): 2104976.

[37]

Zhang J H, Yang W, Zhang M, Wang H J, Si R, Zhong D C, Lu T B. Nano Energy, 2021, 80: 105542.

[38]

Fu J W, Zhu L, Jiang K X, Liu K, Wang Z H, Qiu X Q, Li H M, Hu J H, Pan H, Lu Y R, Chan T S, Liu M. Chemical Engineering Journal, 2021, 415: 128982.

[39]

Zhao Z Y, Liu W, Shi Y T, Zhang H M, Song X D, Shang W Z, Hao C. Physical Chemistry Chemical Physics, 2021, 23(8): 4690.

[40]

Li Y, Li B H, Zhang D N, Cheng L, Xiang Q J. ACS Nano, 2020, 14(8): 10552.

[41]

Wang J, Heil T, Zhu B C, Tung C W, Yu J G, Chen H M, Antonietti M, Cao S W. ACS Nano, 2020, 14(7): 8584.

[42]

Tang S F, Yin X P, Wang G Y, Lu X L, Lu T B. Nano Research, 2019, 12(2): 457.

[43]

Wang H Z, Yang C, Chen F S, Zheng G F, Han Q. Angewandte Chemie-International Edition, 2022, 61(19): e202200413.

[44]

Han Z D, Zhao Y, Gao G Y, Zhang W Y, Qu Y, Zhu H Y, Zhu P F, Wang G F. Small, 2021, 17(26): 2102089.

[45]

Huang P P, Huang J H, Li J Y, Zhang L, He J, Caputo C A, Frenkel A I, Li G H. Chemnanomat, 2021, 7(9): 1051.

[46]

Chen P, Lei B, Dong X A, Wang H, Sheng J P, Cui W, Li J Y, Sun Y J, Wang Z M, Dong F. ACS Nano, 2020, 14(11): 15841.

[47]

Ji S F, Qu Y, Wang T, Chen Y J, Wang G F, Li X, Dong J C, Chen Q Y, Zhang W Y, Zhang Z D, Liang S Y, Yu R, Wang Y, Wang D S, Li Y D. Angewandte Chemie-International Edition, 2020, 59(26): 10651.

[48]

Wang G, Zhang T, Yu W, Sun Z, Nie X, Si R, Liu Y, Zhao Z. CCS Chemistry, 2021, 4(8): 2793.

[49]

Gao G P, Jiao Y, Waclawik E R, Du A J. Journal of the American Chemical Society, 201, 138(19): 6292.

[50]

Yang Y L, Li F, Chen J, Fan J J, Xiang Q J. Chemsuschem, 2020, 13(8): 1979.

[51]

Ong W J, Putri L K, Mohamed A R. Chemistry——A European Journal, 2020, 26(44): 9710.

[52]

Hiragond C, Ali S, Sorcar S, In S I. Catalysts, 2019, 9(4): 370.

[53]

Zhang F, Zhang J H, Wang H F, Li J M, Liu H H, Jin X, Wang X Q, Zhang G Q. Chemical Engineering Journal, 2021, 424: 130004.

[54]

Wu G, Hu S Z, Han Z, Liu C T, Li Q. New Journal of Chemistry, 2017, 41(24): 15289.

[55]

Chen Z P, Mitchell S, Vorobyeva E, Leary R K, Hauert R, Furnival T, Ramasse Q M, Thomas J M, Midgley P A, Dontsova D, Antonietti M, Pogodin S, Lopez N, Perez-Ramirez J. Advanced Functional Materials, 2017, 27(8): 1605785.

[56]

Cao S W, Li H, Tong T, Chen H C, Yu A C, Yu J G, Chen H M. Advanced Functional Materials, 2018, 28(32): 1802169.

[57]

Zhou P, Lv F, Li N, Zhang Y L, Mu Z J, Tang Y H, Lai J P, Chao Y G, Luo M C, Lin F, Zhou J H, Su D, Guo S J. Nano Energy, 2019, 56: 127.

[58]

Hoogenboom R, Schubert U S. Macromolecular Rapid Communications, 2007, 28(4): 368.

[59]

Chen Z P, Mitchell S, Krumeich F, Hauert R, Yakunin S, Kovalenko M V, Perez-Ramirez J. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 5223.

[60]

Cao Y J, Chen S, Luo Q Q, Yan H, Lin Y, Liu W, Cao L L, Lu J L, Yang J L, Yao T, Wei S Q. Angewandte Chemie-International Edition, 2017, 56(40): 12191.

[61]

Kuriki R, Matsunaga H, Nakashima T, Wada K, Yamakata A, Ishitani O, Maeda K. Journal of the American Chemical Society, 201, 138(15): 5159.

[62]

Zhao Y, Zhang T. Science Bulletin, 2020, 65(13): 1055.

[63]

Esrafili M D, Nejadebrahimi B. Applied Surface Science, 2019, 475: 363.

[64]

Yang R Z, Liu J Y, Wang B, Wang R, Song Y H, Hua Y J, Wang C T, She Y B, Yuan J J, Xu H, Li H M. Journal of Alloys And Compounds, 2022, 895: 162290.

[65]

El-Bahy Z M, Ismail A A, Mohamed R M. Journal of Hazardous Materials, 2009, 166(1): 138.

[66]

Villabona-Leal E G, Lopez-Neira J P, Pedraza-Avella J A, Perez E, Meza O. Computational Materials Science, 2015, 107: 48.

[67]

Cho H, Joo H, Kim H, Kim J, Kang K, Yoon J. Chemosphere, 2021, 267: 129289.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/