Efficient Visible Light Hydrogen Evolution Catalyst Composed of Non-noble Metal Nitride (Ni3N) Cocatalyst and Zn0.5Cd0.5S Solid Solution

Zhonghang Xu , Yuanyu Wu , Ran Tao , Zhanbin Jin , Xuedong Fang

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 928 -932.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 928 -932. DOI: 10.1007/s40242-022-2274-8
Article

Efficient Visible Light Hydrogen Evolution Catalyst Composed of Non-noble Metal Nitride (Ni3N) Cocatalyst and Zn0.5Cd0.5S Solid Solution

Author information +
History +
PDF

Abstract

In recent years, many effective photocatalysts have been developed to solve the problem of environmental pollution and clean energy shortage. In this paper, non-noble metal cocatalyst Ni3N nanoparticles supported Zn0.5Cd0.5S(ZCS) nanorods(Ni3N/ZCS) composites were successfully synthesized by ultrasonic method. The hydrogen production efficiencies of the photocatalysts were tested under visible light, which was found that when the loading of Ni3N was 2% of the mass of ZCS, and the Ni3N/ZCS composite had the best hydrogen evolution performance, which could reach 70.3 mmol·h−1·g−1. In addition, the quantum efficiency under 420 nm monochromatic light irradiation was 27.2%. Through different characterization analyses, such as X-ray diffraction(XRD), scanning electron microscopy(SEM), and UV-Vis diffuse reflectance spectra(DRS), a possible photocatalytic mechanism was proposed, providing some reference value for non-precious metals as cocatalysts.

Keywords

Zn0.5Cd0.5S / Non-noble metal nitride / Photocatalytic hydrogen evolution

Cite this article

Download citation ▾
Zhonghang Xu, Yuanyu Wu, Ran Tao, Zhanbin Jin, Xuedong Fang. Efficient Visible Light Hydrogen Evolution Catalyst Composed of Non-noble Metal Nitride (Ni3N) Cocatalyst and Zn0.5Cd0.5S Solid Solution. Chemical Research in Chinese Universities, 2023, 39(6): 928-932 DOI:10.1007/s40242-022-2274-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hoffert M, Caldeira K, Benford G, Criswell D, Green C, Herzog H, Jain A, Kheshgi H, Lackner K, Lewis J, Lightfoot H, Manheimer W, Mankins J, Mauel M, Perkins L, Schlesinger M, Volk T, Wigley T. Science, 2002, 298: 981.

[2]

Fujishima A, Honda K. Nature, 1972, 238: 37.

[3]

Xu A Q, Li B, Du F L. Chem. J. Chinese Universities, 2021, 42(4): 978.

[4]

Ran J R, Zhang J, Yu J G, Jaroniec M, Qiao S Z. Chem. Soc. Rev., 2014, 43: 7787.

[5]

Gomathisankar P, Hachisuka K, Katsumata H, Suzuki T, Funasaka K, Kaneco S. Int. J. Hydrogen Energy, 2013, 38: 8625.

[6]

Li Y C, Ye M F, Yang C H, Li X H, Li Y F. Adv. Funct. Mater., 2005, 15: 433.

[7]

Yu Y, Zhang J, Wu X, Zhao W, Zhang B. Angew. Chem. Int. Ed., 2012, 51: 897.

[8]

Zhang W, Zhou X, Zhong X. Inorg. Chem., 2012, 51: 3579.

[9]

Li Q, Meng H, Zhou P, Zheng Y, Wang J, Yu J, Gong J. ACS Catal., 2013, 3: 882.

[10]

Li Z Q, Zhou W, Tang Y, Tan X, Zhang Y Z, Geng Z K, Guo Y C, Liu L Q, Yu T, Ye J H. ChemSusChem, 2021, 14: 4752.

[11]

Chen M, Hou W Q, Chen C, Wang Y C, Xu Y M. Int. J. Hydrogen Energy, 2022, 47: 17241.

[12]

Liu X L, Dai D J, Cui Z H, Zhang Q Q, Gong X Q, Wang Z Y, Liu Y Y, Zheng Z K, Cheng H F, Dai Y, Huang B B, Wang P. ACS Catal., 2022, 12: 12386.

[13]

Liu X L, Liu Q, Wang P, Liu Y, Z, Huang B B, Rozhkova E A, Zhang Q Q, Wang Z Y, Dai Y, Lu J. Chem. Eng. J, 2018, 337: 480.

[14]

Liu X L, Liang X Z, Wang P, Huang B B, Qin X Y, Zhang X Y, Dai Y. Appl. Catal. B: Environ., 2017, 203: 282.

[15]

Li Y B, Jin Z L, Zhang L J, Fan K. Chin. J. Catal., 2019, 40: 390.

[16]

Zou L, Wang H R, Wang X. ACS Sustain. Chem. Eng., 2017, 5: 303.

[17]

Wang Z Q, Guo Y H, Liu M, Liu X L, Zhang H P, Jiang W Y, Wang P, Zheng Z K, Liu Y Y, Cheng H F, Dai Y, Wang Z Y, Huang B B. Adv. Mater., 2022, 34: 2201594.

[18]

Chava R K, Do J Y, Kang M. J. Alloy. Compd., 2017, 727: 86.

[19]

Chen X B, Shen S H, Guo L J, Mao S S. Chem. Rev., 2010, 110: 6503.

[20]

Yang J H, Wang D E, Han H X, Li C. Acc. Chem. Res., 2013, 46: 1900.

[21]

Cao S, Chen Y, Wang C J, Lv X J, Fu W F. Chem. Commun., 2015, 51: 8708.

[22]

Li Q, Guo B D, Yu J G, Ran J R, Zhang B H, Yan H J, Gong J R. J. Am. Chem. Soc., 2011, 133: 10878.

[23]

Zhang J, Yu J G, Jaroniec M, Gong J R. Nano Lett., 2012, 12: 4584.

[24]

Jin Z B, Wei T T, Li L X, Li F Y, Tao R, Xu L. Dalton Trans., 2019, 48: 2676.

[25]

Russell W C, Sachin R R, Nelson Y D. Catalysts, 2021, 11: 716.

[26]

Liu M, Jing D, Zhou Z, Guo L. Nat. Commun., 2013, 4: 2278.

[27]

Xu K, Chen P, Li X, Tong Y, Ding H, Wu X, Chu W, Peng Z, Wu C, Xie Y. J. Am. Chem. Soc., 2015, 137: 4119.

[28]

Braslavsky S E, Braun A M, Cassano A E, Emeline A V, Litter M I, Palmisano L, Parmon V N, Serpone N. Pure Appl. Chem., 2011, 83: 931.

[29]

Chen Y B, Guo L J. J. Mater. Chem., 2012, 22: 7507.

[30]

Ni W Y, Krammer A, Hsu C S, Chen H M, Schuler A, Hu X L. Angew. Chem. Int. Ed., 2019, 58: 7445.

[31]

Zeng C, Hu Y M, Zhang T R, Dong F, Zhang Y H, Huang H W. J. Mater. Chem., 2018, 6: 16932.

[32]

Xu J, Zhang L, Shi R, Zhu Y. J. Mater. Chem. A, 2013, 1: 14766.

[33]

Dong Y, Kong L, Jiang P, Wang G, Zhao N, Zhang H, Tang B. ACS Sustain. Chem. Eng., 2017, 5: 6845.

AI Summary AI Mindmap
PDF

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/