Single Iron-dimer Catalysts on MoS2 Nanosheet for Potential Nitrogen Activation

Shengjie Qian , Yanggang Wang , Jun Li

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5) : 1226 -1231.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5) : 1226 -1231. DOI: 10.1007/s40242-022-2273-9
Article

Single Iron-dimer Catalysts on MoS2 Nanosheet for Potential Nitrogen Activation

Author information +
History +
PDF

Abstract

Electrocatalytic nitrogen reduction reaction(NRR) is a promising way to produce ammonia(NH3) at ambient temperature and pressure. Herein, we have constructed single Fe dimer catalysts on a molybdenum disulfide monolayer for potential nitrogen activation. By employing ab initio molecular dynamics simulations, it is suggested that a dual iron-single atom site can be dynamically formed, which exhibits the similar Fe-S-Fe structure as the nitrogenase. We further identify an iron dimer with a sulfur vacancy as the active center for realistic nitrogen activation by the free energy calculations since the bridged sulfur is easy to be released in the form of H2S during the reduction process. It is shown that N2 mainly adsorbs on the Fe2 dimer at the sulfur vacancies in the pattern of side-on configuration, and the nitrogen reduction reaction is proceeded by an enzymatic mechanism. Charge analyses further show that the Fe2 dimer mainly works as an electron reservoir while MoS2 substrate with one sulfur vacancy acts as an inert carrier to stabilize the Fe2 dimer. Overall, our work provides important insights into how N2 molecules were adsorbed and activated on Fe2-doped MoS2, and provides new ideas for the transformation of actual reaction sites during electrochemical reactions.

Keywords

Nitrogen reduction reaction / Ab initio molecular dynamics simulation / Single iron-dimer catalyst

Cite this article

Download citation ▾
Shengjie Qian, Yanggang Wang, Jun Li. Single Iron-dimer Catalysts on MoS2 Nanosheet for Potential Nitrogen Activation. Chemical Research in Chinese Universities, 2022, 38(5): 1226-1231 DOI:10.1007/s40242-022-2273-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guo X, Huang S. Electrochimica Acta, 2018, 284(10): 392.

[2]

Tayyebi E, Abghoui Y, Skúlason E. ACS Catalysis, 2019, 9(12): 11137.

[3]

Rosca V, Duca M, de Groot M T, Koper M T M. Chemical Reviews, 2009, 109(6): 2209.

[4]

Lazouski N, Chung M, Williams K, Gala M L, Manthiram K. Nature Catalysis, 2020, 3: 463.

[5]

Smith C, Hill A K, Torrente-Murciano L. Energy & Environmental Science, 2020, 13(2): 331.

[6]

Winter L R, Chen J G. Joule, 2021, 5(2): 300.

[7]

Hammer B, Nørskov J K. Advances in Catalysis, 2000, 45: 71.

[8]

Chen J G, Crooks R M, Seefeldt L C, Bren K L, Bullock R M, Darensbourg M Y, Holland P L, Hoffman B, Janik M J, Jones A K, Kanatzidis M G, King P, Lancaster K M, Lymar S V, Pfromm P, Schneider W F, Schrock R R. Science, 2018, 360(6391): eaar6611.

[9]

Martín A, Shinagawa T, Pérez-Ramírez J. Chem, 2018, 5(2): 263.

[10]

Jaramillo T, Jørgensen K, Lindner Bonde J, Nielsen J, Horch S, Chorkendorff I. Science (New York, NY), 2007, 317: 100.

[11]

Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J, Zhang T. Nature Chemistry, 2011, 3(8): 634.

[12]

Burgess B K. Chemical Reviews, 1990, 90(8): 1377.

[13]

Einsle O, Tezcan F A, Andrade S L A, Schmid B, Yoshida M, Howard J B, Rees D C. Science, 2002, 297(5587): 1696.

[14]

Li J, Chen S, Quan F, Zhan G, Jia F, Ai Z, Zhang L. Chem, 2020, 6(4): 885.

[15]

Zhao X, Zhang X, Xue Z, Chen W, Zhou Z, Mu T. Journal of Materials Chemistry A, 2019, 7(48): 27417.

[16]

Zheng J, Lu L, Lebedev K, Wu S, Zhao P, McPherson I, Tai-Sing W, Kato R, Li Y, Ho P-L, Li G, Bai L, Sun J, Prabhakaran D, Taylor R, Soo Y-L, Suenaga K, Tsang S. Chem Catalysis, 2021, 1(1): 162.

[17]

Su H, Chen L, Chen Y, Si R, Wu Y, Wu X, Geng Z, Zhang W, Zeng J. Angewandte Chemie International Edition, 2020, 59(46): 20411.

[18]

Zhang H, Cui C, Luo Z. The Journal of Physical Chemistry C, 2020, 124(11): 6260.

[19]

Xie K, Wang F, Wei F, Zhao J, Lin S. The Journal of Physical Chemistry C, 2022, 126(11): 5180.

[20]

Kohn W, Sham L J. Physical Review, 1965, 140: A1133.

[21]

Kresse G, Furthmüller J. Computational Materials Science, 199, 6(1): 15.

[22]

Kresse G, Furthmüller J. Physical Review B, 199, 54(16): 11169.

[23]

Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 199, 77: 3865.

[24]

Grimme S, Antony J, Ehrlich S, Krieg H. The Journal of chemical physics, 2010, 132: 154104.

[25]

VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J. Computer Physics Communications, 2005, 167(2): 103.

[26]

Hoover W. Phys. Rev. A: At., Mol., Opt. Phys., 1985, 31: 1695.

[27]

Martyna G, Klein M, Tuckerman M. The Journal of Chemical Physics, 1992, 97: 2635.

[28]

VandeVondele J, Hutter J. The Journal of Chemical Physics, 2007, 127(11): 114105.

[29]

Chadi D J. Physical Review B, 1977, 16(4): 1746.

[30]

Deringer V L, Tchougréeff A L, Dronskowski R. The Journal of Physical Chemistry A, 2011, 115(21): 5461.

[31]

Dronskowski R, Bloechl P E. The Journal of Physical Chemistry, 1993, 97(33): 8617.

[32]

Nørskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T, Jónsson H. The Journal of Physical Chemistry B, 2004, 108(46): 17886.

[33]

Abghoui Y, Skúlason E. Catalysis Today, 2017, 286: 69.

[34]

Jiang C, Wang Y, Zhang Y, Wang H, Chen Q, Wan J. The Journal of Physical Chemistry C, 2018, 122(37): 21617.

[35]

Zhang H, Song B, Zhang W, Cheng Y, Chen Q, Lu K. Chemical Science, 2022, 13(33): 9498.

[36]

Lu K, Xia F, Li B, Liu Y, Abdul Razak I B, Gao S, Kaelin J, Brown D E, Cheng Y. ACS Nano, 2021, 15(10): 16887.

[37]

Schimpl J, Petrilli H, Blöchl P. Journal of the American Chemical Society, 2004, 125: 15772.

[38]

Buscagan T M, Rees D C. Joule, 2019, 3(11): 2662.

[39]

Montoya J H, Tsai C, Vojvodic A, Nørskov J K. ChemSusChem, 2015, 8(13): 2180.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/