Smart Multiple Wetting Control on ZnO Coated Shape Memory Polymer Arrays

Xiaonan Wang , Bohan Wang , Hua Lai , Zhongjun Cheng

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (1) : 151 -158.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (1) : 151 -158. DOI: 10.1007/s40242-022-2265-9
Article

Smart Multiple Wetting Control on ZnO Coated Shape Memory Polymer Arrays

Author information +
History +
PDF

Abstract

Recently, surfaces with intelligent wetting controllability have aroused increased attention. Endowing the surface with stimuli-responsive surface chemistry and tunable surface microstructure can achieve a surface with smart wetting performances. However, almost all existing surfaces only focused on single surface chemistry or micromorphology, thus to achieve smart multiple wetting regulation is still difficult. Herein, we report a ZnO coated shape memory polymer(SMP) surface, and the surface chemistry and micromorphology can be synergistically regulated. ZnO can provide adjustable surface chemistry under UV irradiation, and SMP can offer tunable micromorphology due to its shape memory effect(SME). Based on the combined effect between the above two features, surface wetting performance can be smartly regulated among multiple states. Moreover, due to the excellent controllability of the surface, the application in directional droplet transportation was also demonstrated. This paper offers a new surface with tunability in both surface chemistry and micromorphology, and given the excellent wetting controllability, the surface is believed to be applied in a lot of fields, such as droplet manipulation, fluidic devices and selective catalysis.

Keywords

Wetting control / Shape memory polymer / ZnO / Reversible transition

Cite this article

Download citation ▾
Xiaonan Wang, Bohan Wang, Hua Lai, Zhongjun Cheng. Smart Multiple Wetting Control on ZnO Coated Shape Memory Polymer Arrays. Chemical Research in Chinese Universities, 2023, 39(1): 151-158 DOI:10.1007/s40242-022-2265-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang S, Liu K, Yao X, Jiang L. Chem. Rev., 2015, 115: 8230.

[2]

Lou X, Huang Y, Yang X, Zhu H, Heng L, Xia F. Adv. Funct. Mater., 2020, 30: 1901130.

[3]

Cui Z, Wang Y, Liu M, Zhang H, Jiang Z. Chem. Res. Chinese Universities, 2020, 36(6): 1320.

[4]

Pan T, Yang K, Han Y. Chem. Res. Chinese Universities, 2020, 36(1): 33.

[5]

Wang B, Liang W, Guo Z, Liu W. Chem. Soc. Rev., 2015, 44: 336.

[6]

Sun M, Feng W, Wang B, Han B, Zou J, Yang C, Liu Z. Chem. Res. Chinese Universities, 2019, 35(4): 700.

[7]

Yohe S T, Colson Y L, Grinstaff M W. J. Am. Chem. Soc., 2012, 134: 2016.

[8]

Wang L, Zhao Y, Tian Y, Jiang L. Angew. Chem. Int. Ed., 2015, 54: 14732.

[9]

Cheng M, Liu Q, Ju G, Zhang Y, Jiang L, Shi F. Adv. Mater., 2014, 26: 306.

[10]

Sun T, Wang G, Feng L, Liu B, Ma Y, Jiang L, Zhu D. Angew. Chem. Int. Ed., 2004, 43: 357.

[11]

Qu R, Zhang W, Li X, Liu Y, Shih T, Wei Y, Feng L. J. Mater. Chem. A, 2018, 6: 18003.

[12]

Zong C, Hu M, Azhar U, Chen X, Zhang Y, Zhang S, Lu C. ACS Appl. Mater. Interfaces, 2019, 11: 25436.

[13]

Lim H S, Lee S G, Lee D H, Lee D Y, Lee S, Cho K. Adv. Mater., 2008, 20: 4438.

[14]

Tian D, Zhang N, Zheng X, Hou G, Tian Y, Du Y, Jiang L, Dou S. ACS Nano, 201, 10: 6220.

[15]

Grigoryev A, Tokarev I, Kornev K G, Luzinov I, Minko S. J. Am. Chem. Soc., 2012, 134: 12916.

[16]

Gao W, Wang J, Zhang X, Sun L, Chen Y, Zhao Y. Chem. Eng. J., 2020, 381: 122612.

[17]

Zhao S, Xia H, Wu D, Lv C, Chen Q, Ariga K, Liu L, Sun H. Soft. Matter., 2013, 9: 4236.

[18]

Lee S G, Lee D Y, Lim H S, Lee D H, Lee S, Cho K. Adv. Mater., 2010, 22: 5013.

[19]

Wu D, Wu S, Chen Q, Zhang Y, Yao J, Yao X, Niu L, Wang J, Jiang L, Sun H. Adv. Mater., 2011, 23: 545.

[20]

Zhu Y, Antao D S, Xiao R, Wang E N. Adv. Mater., 2014, 26: 6442.

[21]

Chen C M, Yang S. Adv. Mater., 2014, 26: 1283.

[22]

Zhang D, Cheng Z, Kang H, Yu J, Liu Y, Jiang L. Angew. Chem. Int. Ed., 2018, 57: 3701.

[23]

Zhang D, Xia Q, Lai H, Cheng Z, Liu P, Zhang H, Liu Y, Jiang L. Sci. China. Mater., 2021, 64: 1801.

[24]

Lv T, Cheng Z, Zhang D, Zhang E, Zhao Q, Liu Y, Jiang L. ACS Nano, 201, 10: 9379.

[25]

Song J, Gao M, Zhao C, Lu Y, Huang L, Liu X, Carmalt C J, Deng X, Parkin I P. ACS Nano, 2017, 11: 9259.

[26]

Shao Y, Zhao J, Fan Y, Wan Z, Lu L, Zhang Z, Ming W, Ren L. Chem. Eng. J., 2020, 382: 122989.

[27]

Huo J, Bai X, Yong J, Fang Y, Yang Q, Hou X, Chen F. Chem. Eng. J., 2021, 414: 128694.

[28]

Wang J, Sun L, Zou M, Gao W, Liu C, Shang L, Gu Z, Zhao Y. Sci. Adv., 2017, 3: e1700004.

[29]

Song Y, Lai H, Jiao X, Cheng Z, Kang H, Zhang D, Fan Z, Xie Z, Wang Y, Liu Y. Adv. Compos. Hybrid. Mater., 2022, 5: 788.

[30]

Sun R, Nakajima A, Fujishima A, Watanabe T, Hashimoto K. J. Phys. Chem. B, 2001, 105: 1984.

[31]

Xie T. Polymer, 2011, 52: 4985.

[32]

Zhao Q, Qi H J, Xie T. Prog. Polym. Sci., 2015, 49: 79. 50

[33]

Feng X, Feng L, Jin M, Zhai J, Jiang L, Zhu D. J. Am. Chem. Soc., 2004, 126: 62.

[34]

Sun W, Zhou S, You B, Wu L. J. Mater. Chem. A, 2013, 1: 3146.

[35]

Xu Q F, Liu Y, Lin F J, Mondal B, Lyons A M. ACS Appl. Mater. Interfaces, 2013, 5: 8915.

[36]

Cassie A B D, Baxter S. Trans. Faraday. Soc., 1944, 40: 546.

[37]

Wenzel R N. Ind. Eng. Chem., 193, 28: 988.

[38]

Wang R, Sakai N, Fujishima A, Watanabe T, Hashimoto K. J. Phys. Chem. B, 1999, 103: 2188.

[39]

Zubkov T, Stahl D, Thompson T L, Panayotov D, Diwald O, Yates J T. J. Phys. Chem. B, 2005, 109: 15454.

[40]

Kang H, Liu Y, Lai H, Yu X, Cheng Z, Jiang L. ACS Nano, 2018, 12: 1074.

[41]

Hashimoto K, Irir H, Fujishima A. Jpn. J. Appl. Phys., 2005, 44: 8269.

[42]

Ju J, Bai H, Zheng Y, Zhao T, Fang R, Jiang L. Nat. Commun., 2012, 3: 1247.

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/