Recent Advances on Confining Noble Metal Nanoparticles Inside Metal-Organic Frameworks for Hydrogenation Reactions

Tian Lin , Haowu Wang , Chengqian Cui , Wei Liu , Guodong Li

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6) : 1309 -1323.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6) : 1309 -1323. DOI: 10.1007/s40242-022-2250-3
Review

Recent Advances on Confining Noble Metal Nanoparticles Inside Metal-Organic Frameworks for Hydrogenation Reactions

Author information +
History +
PDF

Abstract

Hydrogenation reaction is one of the pillars of the chemical industry for the synthesis of drugs and fine chemicals. To achieve high catalytic performance, it is still highly desirable for constructing novel supported metal catalysts. Different from conventional supports like metal oxides, zeolites and carbon materials, metal-organic frameworks(MOFs) as the emerging porous materials have exhibited great potential to host metal nanoparticles (NPs) for achieving hydrogenation reactions with high catalytic efficiency, due to their unique porous structures. Recently, many progresses have been made, and thus, it is necessary to summarize the recent progresses on confining metal NPs inside MOFs for hydrogenation reactions. In this review, we first introduced the general synthesis methods for confining noble metal NPs inside MOFs. Then, the applications of noble metal NPs/MOFs catalysts in hydrogenation reactions were summarized, and the synergistic catalytic performances among noble metal NPs, metal nodes, functional groups, and pore channels in MOFs were illustrated. Subsequently, the hydrogen spillover effect involved in the hydrogenation reactions was discussed. Finally, we provide an outlook on the future research directions and challenges of confining noble metal NPs inside MOFs for hydrogenation reactions.

Keywords

Metal-organic framework / Noble metal nanoparticle / Encapsulation / Hydrogenation reaction / Synergistic effect

Cite this article

Download citation ▾
Tian Lin, Haowu Wang, Chengqian Cui, Wei Liu, Guodong Li. Recent Advances on Confining Noble Metal Nanoparticles Inside Metal-Organic Frameworks for Hydrogenation Reactions. Chemical Research in Chinese Universities, 2022, 38(6): 1309-1323 DOI:10.1007/s40242-022-2250-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhong J W, Yang X F, Wu Z L, Liang B L, Huang Y Q, Zhang T. Chem. Soc. Rev., 2020, 49: 1385.

[2]

Modak A, Bhanja P, Dutta S, Chowdhury B, Bhaumik A. Green Chem., 2020, 22: 4002.

[3]

Fang R Q, Dhakshinamoorthy A, Li Y W, Garcia H. Chem. Soc. Rev., 2020, 49: 3638.

[4]

Hou Q Q, Qi X H, Zhen M N, Qian H L, Nie Y F, Bai C Y L, Zhang S Q, Bai X Y, Ju M T. Green Chem., 2021, 23: 119.

[5]

Lan X C, Wang T F. ACS Catal., 2020, 10: 2764.

[6]

Jiang X, Nie X W, Guo X W, Song C S, Chen J G. Chem. Rev., 2020, 120: 7984.

[7]

Etayo P, Vidal-Ferran A. Chem. Soc. Rev., 2013, 42: 728.

[8]

Long J L, Shen K, Li Y W. ACS Catal., 2017, 7: 275.

[9]

Abdine R A A, Hedouin G, Colobert F, Wencel-Delord J. ACS Catal., 2021, 11: 215.

[10]

Lang R, Du X R, Huang Y K, Jiang X Z, Zhang Q, Guo Y L, Liu K P, Qiao B T, Wang A Q, Zhang T. Chem. Rev., 2020, 120: 11986.

[11]

He C, Liang J, Zou Y H, Yi J D, Huang Y B, Cao R. Natl. Sci. Rev., 2021, 9: nwab157.

[12]

Habib N R, Asedegbega-Nieto E, Taddesse A M, Diaz I. Dalton Trans., 2021, 50: 10340.

[13]

Zhu Y F, Qiu X Y, Zhao S L, Guo J, Zhang X F, Zhao W S, Shi Y N, Tang Z Y. Nano Res., 2020, 13: 1928.

[14]

Hou C, Zhao G F, Ji Y J, Niu Z Q, Wang D S, Li Y D. Nano Res., 2014, 7: 1364.

[15]

Li G D, Tang Z Y. Nanoscale, 2014, 6: 3995.

[16]

Xing L W, Jin Y J, Weng Y X, Ji Y J. Front. Chem., 2021, 9: 810147.

[17]

Li Y, Yu J H. Nat. Rev. Mater., 2021, 6: 1156.

[18]

Sadakiyo M. Nanoscale, 2022, 14: 3398.

[19]

Gao C B, Lyu F L, Yin Y D. Chem. Rev., 2021, 121: 834.

[20]

Liu L C, Corma A. Chem. Rev., 2018, 118: 4981.

[21]

Li Z X, Hu M L, Liu J H, Wang W W, Li Y J, Fan W B, Gong Y X, Yao J S, Wang P, He M, Li Y L. Nano Res., 2022, 15: 1983.

[22]

Bavykina A, Kolobov N, Khan I S, Bau J A, Ramirez A, Gascon J. Chem. Rev., 2020, 120: 8468.

[23]

Hannagan R T, Giannakakis G, Flytzani-Stephanopoulos M, Sykes E C H. Chem. Rev., 2020, 120: 12044.

[24]

Hou C C, Wang H F, Li C X, Xu Q. Energy Environ. Sci., 2020, 13: 1658.

[25]

Xia C, Qiu Y R, Xia Y, Zhu P, King G, Zhang X, Wu Z Y, Kim J Y, Cullen D A, Zheng D X, Li P, Shakouri M, Heredia E, Cui P X, Alshareef H N, Hu Y F, Wang H T. Nat. Chem., 2021, 13: 887.

[26]

Zhang T J, Walsh A G, Yu J H, Zhang P. Chem. Soc. Rev., 2021, 50: 569.

[27]

Zhang F F, Zhu Y L, Lin Q, Zhang L, Zhang X W, Wang H T. Energy Environ. Sci., 2021, 14: 2954.

[28]

Han B, Li T B, Zhang J Y, Zeng C B, Matsumoto H, Su Y, Qiao B T, Zhang T. Chem. Commun., 2020, 56: 4870.

[29]

Bond G C. Surface Science, 1985, 156: 966.

[30]

He C, Wu Q J, Mao M J, Zou Y H, Liu B T, Huang Y B, Cao R. CCS Chem., 2021, 3: 2368.

[31]

Furukawa H, Cordova K E, O’Keeffe M, Yaghi Omar M. Science, 2013, 341: 1230444.

[32]

Kitagawa S. Chem. Soc. Rev., 2014, 43: 5415.

[33]

Long J R, Yaghi O M. Chem. Soc. Rev., 2009, 38: 1213.

[34]

Yaghi O M, O’Keeffe M, Ockwig N W, Chae H K, Eddaoudi M, Kim J. Nature, 2003, 423: 705.

[35]

Zhou H C, Long J R, Yaghi O M. Chem. Rev., 2012, 112: 673.

[36]

Furukawa H, Ko N, Go Y B, Aratani N, Choi S B, Choi E, Yazaydin A O, Snurr R Q, O’Keeffe M, Kim J, Yaghi O M. Science, 2010, 329: 424.

[37]

Shimizu G K H, Vaidhyanathan R, Taylor J M. Chem. Soc. Rev., 2009, 38: 1430.

[38]

Yang Q H, Wang Y M, Tang X, Zhang Q J, Dai S, Peng H T, Lin Y C, Tian Z Q, Lu Z Y, Chen L. Nano Lett., 2022, 22: 838.

[39]

Huang Y B, Liang J, Wang X S, Cao R. Chem. Soc. Rev., 2017, 46: 126.

[40]

Yang Q H, Xu Q, Jiang H L. Chem. Soc. Rev., 2017, 46: 4774.

[41]

Wang N, Sun Q M, Yu J H. Adv. Mater., 2019, 31: 1803966.

[42]

Yang X C, Xu Q. Trends in Chem., 2020, 2: 214.

[43]

Sabo M, Henschel A, Fröde H, Klemm E, Kaskel S. J. Mater. Chem., 2007, 17: 3827.

[44]

Aijaz A, Karkamkar A, Choi Y J, Tsumori N, Rönnebro E, Autrey T, Shioyama H, Xu Q. J. Am. Chem. Soc., 2012, 134: 13926.

[45]

Zhu Q L, Li J, Xu Q. J. Am. Chem. Soc., 2013, 135: 10210.

[46]

Hermes S, Schröter M K, Schmid R, Khodeir L, Muhler M, Tissler A, Fischer R W, Fischer R A. Angew. Chem. Int. Ed., 2005, 44: 6237.

[47]

Ishida T, Nagaoka M, Akita T, Haruta M. Chem. Eur. J., 2008, 14: 8456.

[48]

Li J, Zhu Q L, Xu Q. Chem. Commun., 2014, 50: 5899.

[49]

Li J, Zhu Q L, Xu Q. Catal. Sci. Technol., 2015, 5: 525.

[50]

Roy S, Pachfule P, Xu Q. Eur. J. Inorg. Chem., 201, 2016: 4353.

[51]

He H H, Li L Y, Liu Y, Kassymova M, Li D D, Zhang L L, Jiang H L. Nano Res., 2021, 14: 444.

[52]

Zhang W, Shi W, Ji W, Wu H, Gu Z, Wang P, Li X, Qin P, Zhang J, Fan Y, Wu T, Fu Y, Zhang W, Huo F. ACS Catal., 2020, 10: 5805.

[53]

Zhao M T, Deng K, He L C, Liu Y, Li G D, Zhao H J, Tang Z Y. J. Am. Chem. Soc., 2014, 136: 1738.

[54]

Liu X, He L C, Zheng J Z, Guo J, Bi F, Ma X, Zhao K, Liu Y, Song R, Tang Z Y. Adv. Mater., 2015, 27: 3273.

[55]

Sun Y G, Xia Y N. Science, 2002, 298: 2176.

[56]

Sau T K, Murphy C J. Langmuir, 2005, 21: 2923.

[57]

Chang G G, Ma X C, Zhang Y X, Wang L Y, Tian G, Liu J W, Wu J, Hu Z Y, Yang X Y, Chen B L. Adv. Mater., 2019, 31: 1904969.

[58]

Feng X, Hajek J, Jena H S, Wang G, Veerapandian S K P, Morent R, De Geyter N, Leyssens K, Hoffman A E J, Meynen V, Marquez C, De Vos D E, Van Speybroeck V, Leus K, Van Der Voort P. J. Am. Chem. Soc., 2020, 142: 3174.

[59]

Feng Y, Chen Q, Jiang M Q, Yao J F. Ind. Eng. Chem. Res., 2019, 58: 17646.

[60]

Gutterød E S, Pulumati S H, Kaur G, Lazzarini A, Solemsli B G, Gunnæs A E, Ahoba-Sam C, Kalyva M E, Sannes J A, Svelle S, Skúlason E, Nova A, Olsbye U. J. Am. Chem. Soc., 2020, 142: 17105.

[61]

Xu W L, Zhang Y W, Wang J J, Xu Y X, Bian L, Ju Q, Wang Y M, Fang Z L. Nat. Commun., 2022, 13: 2068.

[62]

He L C, Liu Y, Liu J Z, Xiong Y S, Zheng J Z, Liu Y L, Tang Z Y. Angew. Chem. Int. Ed., 2013, 52: 3741.

[63]

Liu H L, Chang L N, Bai C H, Chen L Y, Luque R, Li Y W. Angew. Chem. Int. Ed., 201, 55: 5019.

[64]

Chen L Y, Chen H R, Luque R, Li Y W. Chem. Sci., 2014, 5: 3708.

[65]

Zhao M T, Yuan K, Wang Y, Li G D, Guo J, Gu L, Hu W P, Zhao H J, Tang Z Y. Nature, 201, 539: 76.

[66]

Li G D, Zhao S L, Zhang Y, Tang Z Y. Adv. Mater., 2018, 30: 1800702.

[67]

Dai S, Tissot A, Serre C. Adv. Energy Mater., 2022, 12: 2100061.

[68]

Orr K W P, Collins S M, Reynolds E M, Nightingale F, Bostroem H L B, Cassidy S J, Dawson D M, Ashbrook S E, Magdysyuk O V, Midgley P A, Goodwin A L, Yeung H H M. Chem. Sci., 2021, 12: 4494.

[69]

Kuo C H, Tang Y, Chou L Y, Sneed B T, Brodsky C N, Zhao Z P, Tsung C-K. J. Am. Chem. Soc., 2012, 134: 14345.

[70]

Zhang S W, Fan Y Q, Luo L S, Li C, Ma Y H, Li T. Chem. Commun., 2021, 57: 3415.

[71]

Bai X J, Zhai X, Zhang L Y, Fu Y, Qi W. Matter, 2021, 4: 2919.

[72]

Choe K, Zheng F B, Wang H, Yuan Y, Zhao W S, Xue G X, Qiu X Y, Ri M, Shi X H, Wang Y L, Li G D, Tang Z Y. Angew. Chem. Int. Ed., 2020, 59: 3650.

[73]

Zhou A, Dou Y, Zhou J, Li J R. ChemSusChem, 2020, 13: 205.

[74]

Wang H W, Zheng F B, Xue G X, Wang Y L, Li G D, Tang Z Y. Sci. China Chem., 2021, 64: 1854.

[75]

Liu D, Wan J W, Pang G S, Tang Z Y. Adv. Mater., 2019, 31: 1803291.

[76]

Guo J, Qin Y T, Zhu Y F, Zhang X F, Long C, Zhao M T, Tang Z Y. Chem. Soc. Rev., 2021, 50: 5366.

[77]

Zhang W, Zheng B, Shi W, Chen X, Xu Z, Li S, Chi Y R, Yang Y, Lu J, Huang W, Huo F. Adv. Mater., 2018, 30: 1800643.

[78]

Zhang W N, Lu G, Cui C L, Liu Y Y, Li S Z, Yan W J, Xing C, Chi Y R, Yang Y H, Huo F W. Adv. Mater., 2014, 26: 4056.

[79]

Wang B Q, Liu W X, Zhang W N, Liu J F. Nano Res., 2017, 10: 3826.

[80]

Lu G, Li S Z, Guo Z, Farha O K, Hauser B G, Qi X Y, Wang Y, Wang X, Han S Y, Liu X G, DuChene J S, Zhang H, Zhang Q C, Chen X D, Ma J, Loo S C J, Wei W D, Yang Y H, Hupp J T, Huo F. Nat. Chem., 2012, 4: 310.

[81]

Liu Y, Shen Y, Zhang W N, Weng J N, Zhao M T, Zhu T S, Chi Y R, Yang Y H, Zhang H, Huo F W. Chem. Commun., 2019, 55: 11770.

[82]

Chen D X, Yang W J, Jiao L, Li L Y, Yu S H, Jiang H L. Adv. Mater., 2020, 32: 2000041.

[83]

Fan Z Y, Staiger L, Hemmer K, Wang Z, Wang W J, Xie Q J, Zhang L J, Urstoeger A, Schuster M, Lercher J A, Cokoja M, Fischer R A. Cell Rep. Phys. Sci., 2022, 3: 100757.

[84]

Li L Y, Li Z X, Yang W J, Huang Y M, Huang G, Guan Q Q, Dong Y M, Lu J L, Yu S H, Jiang H L. Chem, 2021, 7: 686.

[85]

Jiao L, Wang J X, Jiang H L. Acc. Chem. Res., 2021, 2: 327.

[86]

Choi K M, Na K, Somorjai G A, Yaghi O M. J. Am. Chem. Soc., 2015, 137: 7810.

[87]

Zhang W, Hu Y L, Ge J, Jiang H L, Yu S H. J. Am. Chem. Soc., 2014, 136: 16978.

[88]

Zhang Z J, Zhang S L, Yao Q L, Feng G, Zhu M H, Lu Z H. Inorg. Chem. Front., 2018, 5: 370.

[89]

Liu L L, Zhou X J, Guo L X, Yan S J, Li Y J, Jiang S, Tai X S. Rsc Adv., 2020, 10: 33417.

[90]

Ru W, Liu Y N, Fu B A, Fu F Z, Feng J T, Li D Q. Small, 2022, 18: 2103852.

[91]

Zahid M, Li J, Ismail A, Zaera F, Zhu Y J. Catal. Sci. Technol., 2021, 11: 2433.

[92]

Wu H Q, Huang L, Li J Q, Zheng A M, Tao Y, Yang L X, Yin W H, Luo F. Inorg. Chem., 2018, 57: 12444.

[93]

Liu L M, Chen Z J, Wang J J, Zhang D L, Zhu Y H, Ling S L, Huang K W, Belmabkhout Y, Adil K, Zhang Y, Slater B, Eddaoudi M, Han Y. Nat. Chem., 2019, 11: 622.

[94]

Tan Y C, Zeng H C. Nat. Commun., 2018, 9: 4326.

[95]

Fang Z, Bueken B, De Vos D E, Fischer R A. Angew. Chem. Int. Ed., 2015, 54: 7234.

[96]

Fang Z, Dürholt J P, Kauer M, Zhang W, Lochenie C, Jee B, Albada B, Metzler-Nolte N, Pöppl A, Weber B, Muhler M, Wang Y, Schmid R, Fischer R A. J. Am. Chem. Soc., 2014, 136: 9627.

[97]

Zhong J, Yang X, Wu Z, Liang B, Huang Y, Zhang T. Chem. Soc. Rev., 2020, 49: 1385.

[98]

Li J, Huang H, Xue W, Sun K, Song X, Wu C, Nie L, Li Y, Liu C, Pan Y, Jiang H-L, Mei D, Zhong C. Nat. Catal., 2021, 4: 719.

[99]

Yi J D, Xie R K, Xie Z L, Chai G L, Liu T F, Chen R P, Huang Y B, Cao R. Angew. Chem. Int. Ed., 2020, 59: 23641.

[100]

Meng D L, Zhang M D, Si D H, Mao M J, Hou Y, Huang Y B, Cao R. Angew. Chem. Int. Ed., 2021, 60: 25485.

[101]

Wang H Q. Nano Res., 2022, 15: 2834.

[102]

Gutterød E S, Lazzarini A, Fjermestad T, Kaur G, Manzoli M, Bordiga S, Svelle S, Lillerud K P, Skúlason E, Øien-Ødegaard S, Nova A, Olsbye U. J. Am. Chem. Soc., 2020, 142: 999.

[103]

Zhang W L, Ji W L, Li L J, Qin P S, Khalil I E, Gu Z D, Wang P, Li H F, Fan Y, Ren Z, Shen Y, Zhang W N, Fu Y, Huo F W. ACS Appl. Mater. Interfaces, 2020, 12: 52660.

[104]

Dhakshinamoorthy A, Garcia H. ChemSusChem, 2014, 7: 2392.

[105]

Zhang Y Y, Huang C, Mi L W. Dalton Trans., 2020, 49: 14723.

[106]

Shi S L, Yu Y, Zhang B Z, Zhong Y C, Wang L, Wang S H, Ding S M, Chen C. Front. Chem., 2021, 9: 738736.

[107]

Ardkhean R, Caputo D F J, Morrow S M, Shi H, Xiong Y, Anderson E A. Chem. Soc. Rev., 201, 45: 1557.

[108]

Martínez S, Veth L, Lainer B, Dydio P. ACS Catal., 2021, 11: 3891.

[109]

Guo Y C, Feng L, Wu C C, Wang X M, Zhang X. ACS Appl. Mater. Interfaces, 2019, 11: 33978.

[110]

Corma A, Iborra S, Velty A. Chem. Rev., 2007, 107: 2411.

[111]

Serrano-Ruiz J C, Dumesic J A. Energy Environ. Sci., 2011, 4: 83.

[112]

Song Y, Feng X Y, Chen J S, Brzezinski C, Xu Z W, Lin W B. J. Am. Chem. Soc., 2020, 142: 4872.

[113]

Wang Y M, Tian H M, Li H, Deng X C, Zhang Q, Ai Y J, Sun Z J, Wang Y, Liu L, Hu Z N, Zhang X Y, Guo R X, Xu W J, Liang Q L, Sun H B. ACS Appl. Mater. Interfaces, 2022, 14: 7949.

[114]

Khoobiar S. J. Phys. Chem., 1964, 68: 411.

[115]

Boudart M, Vannice M A, Benson J E. Zeitschrift für Physikalische Chemie, 1969, 64: 171.

[116]

Yamazaki Y, Mori K, Kuwahara Y, Kobayashi H, Yamashita H. ACS Appl. Mater. Interfaces, 2021, 13: 48669.

[117]

Shen H F, Li H, Yang Z S, Li C L. Green Energy Environ., 2022.

[118]

Harris J, Andersson S. Phys. Rev. Lett., 1985, 55: 1583.

[119]

Shao Y, Zeng H C. ACS Appl Nano Mater., 2021, 4: 6030.

[120]

Geng Z, Wang D B, Zhang C M, Zhou X Y, Xin H F, Liu X P, Cai M. Int. J. Hydrog. Energy, 2014, 39: 13643.

[121]

Karim W, Spreafico C, Kleibert A, Gobrecht J, VandeVondele J, Ekinci Y, van Bokhoven J A. Nature, 2017, 541: 68.

[122]

Lueking A, Yang R T. J. Catal., 2002, 206: 165.

[123]

Gutiérrez I, Díaz E, Ordóñez S. Thermochimica. Acta, 2013, 567: 79.

[124]

Li Y W, Yang R T. J. Am. Chem. Soc., 200, 128: 726.

[125]

Sculley J L, Yuan D Q, Zhou H C. Energy Environ. Sci., 2011, 4: 2721.

[126]

Xiong M, Gao Z, Qin Y. ACS Catal., 2021, 11: 3159.

[127]

Zhan G, Zeng H C. Nat. Commun., 2018, 9: 3778.

[128]

Shen H Y, Zhao H H, Yang J, Zhao J, Yan L, Chou L J, Song H L. New J. Chem., 2022, 46: 3095.

[129]

Zhang W L, Shi W X, Ji W L, Wu H B, Gu Z D, Wang P, Li X H, Qin P S, Zhang J, Fan Y, Wu T Y, Fu Y, Zhang W N, Huo F W. ACS Catal., 2020, 10: 5805.

[130]

Guo C Y, Liang C H, Qin X P, Gu Y J, Gao P, Shao M H, Wong W-T. ACS Appl. Nano Mater., 2020, 3: 7242.

[131]

Qi L X, Dai J J, Liao Y C, Tian J, Sun D H. Catal. Sci. Technol., 2022, 12: 2519.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/