Electronic and Nano-structural Modulation of Co(OH)2 Nanosheets by Fe-Benzenedicarboxylate for Efficient Oxygen Evolution

Long Xiao , Huirong Wu , Yong Zhang , Hao Sun , Wenchao Zhang , Fenglei Lyu , Zhao Deng , Yang Peng

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (2) : 219 -223.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (2) : 219 -223. DOI: 10.1007/s40242-022-2228-1
Article

Electronic and Nano-structural Modulation of Co(OH)2 Nanosheets by Fe-Benzenedicarboxylate for Efficient Oxygen Evolution

Author information +
History +
PDF

Abstract

Oxygen evolution reaction(OER) plays a key role in the electrochemical conversion and storage processes, but the sluggish kinetics of OER strongly impedes its large-scale applications. We herein reported the in situ growth of Fe-benzenedicarboxylate(Fe-BDC) on Co(OH)2 nanoplates[Fe-BDC/Co(OH)2] that showed remarkably enhanced OER activity than the pristine Co(OH)2. The incorporation of Fe species could enhance the intrinsic OER activity of Co and BDC could increase the electrochemically active surface area(ECSA), thus resulting in dramatically enhanced OER activity. In situ Raman spectroscopy characterization disclosed that Fe-CoOOH reconstructed from Fe-BDC/Co(OH)2 was the real active site for OER. This work highlights the significance of rational tailoring of the nanostructure and electronic structure of Co(OH)2 and provides more opportunities for its widespread applications.

Keywords

Co(OH)2 nanoplate / Oxygen evolution reaction / Electronic structure / Nanostructure / In situ Raman spectroscopy

Cite this article

Download citation ▾
Long Xiao, Huirong Wu, Yong Zhang, Hao Sun, Wenchao Zhang, Fenglei Lyu, Zhao Deng, Yang Peng. Electronic and Nano-structural Modulation of Co(OH)2 Nanosheets by Fe-Benzenedicarboxylate for Efficient Oxygen Evolution. Chemical Research in Chinese Universities, 2023, 39(2): 219-223 DOI:10.1007/s40242-022-2228-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Birdja Y Y, Pérez-Gallent E, Figueiredo M C, Göttle A J, Calle-Vallejo F, Koper M T M. Nat. Energy, 2019, 4(9): 732.

[2]

Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Science, 2017, 355(6321): eaad4998.

[3]

Yu Z-Y, Duan Y, Feng X-Y, Yu X, Gao M-R, Yu S-H. Adv. Mater., 2021, 33(31): 2007100.

[4]

Lyu F, Wang Q, Choi S M, Yin Y. Small, 2019, 15(1): 1804201.

[5]

Feng C, Faheem M B, Fu J, Xiao Y, Li C, Li Y. ACS Catal., 2020, 10(7): 4019.

[6]

Li Y, Li F-M, Meng X-Y, Li S-N, Zeng J-H, Chen Y. ACS Catal., 2018, 8(3): 1913.

[7]

Qiu B, Wang C, Zhang N, Cai L, Xiong Y, Chai Y. ACS Catal., 2019, 9(7): 6484.

[8]

Zhou Q, Chen Y, Zhao G, Lin Y, Yu Z, Xu X, Wang X, Liu H K, Sun W, Dou S X. ACS Catal., 2018, 8(6): 5382.

[9]

Lv L, Yang Z, Chen K, Wang C, Xiong Y. Adv. Energy Mater., 2019, 9(17): 1803358.

[10]

He J, Liu Y, Huang Y, Li H, Zou Y, Dong C-L, Wang S. Adv. Funct. Mater., 2021, 31(15): 2009245.

[11]

Zhang S L, Guan B Y, Lu X F, Xi S, Du Y, Lou X W. Adv. Mater., 2020, 32(31): 2002235.

[12]

Wang Y, Wang Z-P, Wu H, Hou L, Liu Z-Q. Chem. Commun., 2022, 58: 637.

[13]

Huang Z-F, Song J, Du Y, Xi S, Dou S, Nsanzimana J M V, Wang C, Xu Z J, Wang X. Nat. Energy, 2019, 4(4): 329.

[14]

Zhang J-Y, Yan Y, Mei B, Qi R, He T, Wang Z, Fang W, Zaman S, Su Y, Ding S, Xia B Y. Energy Environ. Sci., 2021, 14(1): 365.

[15]

Liu Z, Wang G, Zhu X, Wang Y, Zou Y, Zang S, Wang S. Angew. Chem. Int. Ed., 2020, 59(12): 4736.

[16]

Tang T, Zhang Q, Bai X, Wang Z, Guan J. Chem. Commun., 2021, 57(89): 11843.

[17]

Zhao Y., Guo Y., Lu X. F., Luan D., Gu X., Lou X. W., Adv. Mater., 2022, 2203442

[18]

Pei Z., Lu X. F., Zhang H., Li Y., Luan D., Lou X.-W., Angew. Chem. Int. Ed., 2022, e202207537

[19]

Zheng X, Yang J, Xu Z, Wang Q, Wu J, Zhang E, Dou S, Sun W, Wang D, Li Y. Angew. Chem. Int. Ed., 2022, 61(32): e202205946.

[20]

Hao Z, Liu D, Ge H, Zuo X, Feng X, Shao M, Yu H, Yuan G, Zhang Y. Chem. Res. Chinese Universities, 2022, 38(3): 823.

[21]

Lei C, Li W, Wang G, Zhuang L, Lu J, Xiao L. Chem. Res. Chinese Universities, 2021, 37(2): 293.

[22]

Zhang Z, Wang H, Li Y, Xie M, Li C, Lu H, Peng Y, Shi Z. Chem. Res. Chinese Universities, 2022, 38(3): 750.

[23]

Xu W, Lyu F, Bai Y, Gao A, Feng J, Cai Z, Yin Y. Nano Energy, 2018, 43: 110.

[24]

Song Y, Xu B, Liao T, Guo J, Wu Y, Sun Z. Small, 2021, 17(9): 2002240.

[25]

Chung D Y, Lopes P P, Martins P, He H, Kawaguchi T, Zapol P, You H, Tripkovic D, Strmcnik D, Zhu Y, Seifert S, Lee S, Stamenkovic V R, Markovic N M. Nat. Energy, 2020, 5(3): 222.

[26]

Cheng J, Wang D. Chin. J. Catal., 2022, 43(6): 1380.

[27]

Zhu K, Shi F, Zhu X, Yang W. Nano Energy, 2020, 73: 104761.

[28]

Zhuang L, Jia Y, He T, Du A, Yan X, Ge L, Zhu Z, Yao X. Nano Res., 2018, 11(6): 3509.

[29]

Lv J, Guan X, Huang Y, Cai L, Yu M, Li X, Yu Y, Chen D. Nanoscale, 2021, 13(37): 15755.

[30]

Xue Z, Liu K, Liu Q, Li Y, Li M, Su C-Y, Ogiwara N, Kobayashi H, Kitagawa H, Liu M, Li G. Nat. Commun., 2019, 10(1): 5048.

[31]

Xiao Z, Huang Y-C, Dong C-L, Xie C, Liu Z, Du S, Chen W, Yan D, Tao L, Shu Z, Zhang G, Duan H, Wang Y, Zou Y, Chen R, Wang S. J. Am. Chem. Soc., 2020, 142(28): 12087.

[32]

Yue K, Liu J, Zhu Y, Xia C, Wang P, Zhang J, Kong Y, Wang X, Yan Y, Xia B Y. Energy Environ. Sci., 2021, 14(12): 6546.

[33]

Yu Z-Y, Duan Y, Kong Y, Zhang X-L, Feng X-Y, Chen Y, Wang H, Yu X, Ma T, Zheng X, Zhu J, Gao M-R, Yu S-H. J. Am. Chem. Soc., 2022, 144(29): 13163.

[34]

Yang H, Dong C, Wang H, Qi R, Gong L, Lu Y, He C, Chen S, You B, Liu H, Yao J, Jiang X, Guo X, Xia B Y. Proc. Natl. Acad. Sci., 2022, 119(20): e2202812119.

[35]

Zhang B, Zheng X, Voznyy O, Comin R, Bajdich M, García-Melchor M, Han L, Xu J, Liu M, Zheng L, Arquer F P G D, Dinh C T, Fan F, Yuan M, Yassitepe E, Chen N, Regier T, Liu P, Li Y, Luna P D, Janmohamed A, Xin H L, Yang H, Vojvodic A, Sargent E H. Science, 201, 352(6283): 333.

[36]

Huang J, Chen J, Yao T, He J, Jiang S, Sun Z, Liu Q, Cheng W, Hu F, Jiang Y, Pan Z, Wei S. Angew. Chem. Int. Ed., 2015, 54(30): 8722.

[37]

Song F, Hu X. Nat. Commun., 2014, 5(1): 4477.

[38]

Zhao L, Dong B, Li S, Zhou L, Lai L, Wang Z, Zhao S, Han M, Gao K, Lu M, Xie X, Chen B, Liu Z, Wang X, Zhang H, Li H, Liu J, Zhang H, Huang X, Huang W. ACS Nano, 2017, 11(6): 5800.

[39]

Zhu D, Liu J, Wang L, Du Y, Zheng Y, Davey K, Qiao S-Z. Nanoscale, 2019, 11(8): 3599.

[40]

Zhu D, Liu J, Zhao Y, Zheng Y, Qiao S-Z. Small, 2019, 15(14): 1805511.

[41]

Suen N-T, Hung S-F, Quan Q, Zhang N, Xu Y-J, Chen H M. Chem. Soc. Rev., 2017, 46(2): 337.

[42]

Xiao H, Shin H, Goddard W A. Proc. Natl. Acad. Sci., 2018, 115(23): 5872.

[43]

Sun H, Chen L, Lian Y, Yang W, Lin L, Chen Y, Xu J, Wang D, Yang X, Rümmerli M H, Guo J, Zhong J, Deng Z, Jiao Y, Peng Y, Qiao S. Adv. Mater., 2020, 32(52): 2006784.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/