Highly Efficient Oxygen Reduction Reaction Fe-N-C Cathode in Long-durable Direct Glycol Fuel Cells

Chengyong Shu , Zhuofan Gan , Jia Zhou , Zhen Wang , Wei Tang

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5) : 1268 -1274.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5) : 1268 -1274. DOI: 10.1007/s40242-022-2223-6
Article

Highly Efficient Oxygen Reduction Reaction Fe-N-C Cathode in Long-durable Direct Glycol Fuel Cells

Author information +
History +
PDF

Abstract

The oxygen reduction reaction in direct glycol fuel cells heavily relies on noble metal-based electrocatalysts. In this work, novel Pt group metal-free catalysts based on porous Fe-N-C materials are successfully synthesized as catalysts with high activity and durability for the cathode oxygen reduction reaction (ORR). Through the encapsulation of NH4SCN salt, the surface elements and pore structure of the catalyst are effectively changed, and the active sites of Fe effectively are increased. The half-wave potential of the best Fe-N-C catalyst was −0.02 V vs. Hg/HgO in an alkaline environment. The porous Fe-N-C catalyst possesses a large specific surface area(1158 m2/g) and shows good activity and tolerance to glycol. The direct glycol fuel cell with the Fe-N-C cathode achieved a maximum power density of 62.2 mW/cm2 with 4 mol/L KOH and 4 mol/L glycol solution at 25 °C and maintained discharge for more than 250 h at a 50 A/cm2 current density.

Keywords

Fuel cell / Fe-N-C / Single atom catalysis / Oxygen reduction reaction(ORR)

Cite this article

Download citation ▾
Chengyong Shu, Zhuofan Gan, Jia Zhou, Zhen Wang, Wei Tang. Highly Efficient Oxygen Reduction Reaction Fe-N-C Cathode in Long-durable Direct Glycol Fuel Cells. Chemical Research in Chinese Universities, 2022, 38(5): 1268-1274 DOI:10.1007/s40242-022-2223-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ma Y, Fu Y, Jiang W, Wu Y, Liu C, Che G, Fang Q. Journal of Materials Chemistry A, 2022, 10: 10092.

[2]

Chong L, Wen J, Kubal J, Sen F G, Zou J, Greeley J, Chan M, Barkholtz H, Ding W, Liu D J. Science, 2018, 362(6420): 1276.

[3]

Kang Z, Mo J, Yang G, Li Y, Talley D A, Retterer S T, Cullen D A, Toops T J, Brady M P, Bender G, Pivovar B S, Green J B, Zhang F-Y. Applied Energy, 2017, 206: 983.

[4]

Ou W, Qiu C, Su C. Chinese Journal of Catalysis, 2022, 43(4): 956.

[5]

Yao Y, Wang S, Li Z, Wu Y. Journal of Energy Chemistry, 2021, 63: 604.

[6]

Han Y, Wang Y, Xu R, Chen W, Zheng L, Han A, Zhu Y, Zhang J, Zhang H, Luo J, Chen C, Peng Q, Wang D, Li Y. Energy & Environmental Science, 2018, 11(9): 2348.

[7]

Gangadharan P K, Pandikassala A, Kurungot S. ACS Appl Mater Interfaces, 2021, 13(7): 8147.

[8]

Li X, Yang X, Liu L, Zhao H, Li Y, Zhu H, Chen Y, Guo S, Liu Y, Tan Q, Wu G. ACS Catalysis, 2021, 11(12): 7450.

[9]

Abbasi R, Setzler B P, Lin S, Wang J, Zhao Y, Xu H, Pivovar B, Tian B, Chen X, Wu G, Yan Y. Adv. Mater., 2019, 31(31): e1805876.

[10]

Thompson S T, James B D, Huya-Kouadio J M, Houchins C, DeSantis D A, Ahluwalia R, Wilson A R, Kleen G, Papageorgopoulos D. Journal of Power Sources, 2018, 399(30): 304.

[11]

Zhao S-N, Li J-K, Wang R, Cai J, Zang S-Q. Advanced Materials, 2022, 34(5): 2107291.

[12]

Zhao J, Fu C, Ye K, Liang Z, Jiang F, Shen S, Zhao X, Ma L, Shadike Z, Wang X, Zhang J, Jiang K. Nature Communications, 2022, 13(1): 685.

[13]

Zhang J, Wang B, Jin J, Yang S, Li G. Renewable and Sustainable Energy Reviews, 2022, 156: 111998.

[14]

Zhu B. M. Y., Xia C., Wang B., Kim J. S., Lund P., Li T., Energy Mater., 2021, (1), 100002

[15]

Dai S, Hou Y, Onoue M, Zhang S, Gao W, Yan X, Graham G W, Wu R, Pan X. Nano Lett., 2017, 17(8): 4683.

[16]

Dai S, You Y, Zhang S, Cai W, Xu M, Xie L, Wu R, Graham G W, Pan X. Nat. Commun., 2017, 8(1): 204.

[17]

Yang X, Yao K X, Ye J Y, Yuan Q, Zhao F, Li Y, Zhou Z. Advanced Functional Materials, 2021, 31(36): 2103671.

[18]

Raseruthe K E, Matthews T, Gwebu S S, Pillay K, Maxakato N W. Materials Research Express, 2021, 8(1): 015017.

[19]

Wang Y, Wang D, Li Y. Adv. Mater., 2021, 33(34): e2008151.

[20]

Kim J, Kim H, Lee W J, Ruqia B, Baik H, Oh H S, Paek S M, Lim H K, Choi C H, Choi S I. J. Am. Chem. Soc., 2019, 141(45): 18256.

[21]

Liu R, Gong Z, Liu J, Dong J, Liao J, Liu H, Huang H, Liu J, Yan M, Huang K, Gong H, Zhu J, Cui C, Ye G, Fei H. Adv. Mater., 2021, 33(41): e2103533.

[22]

Liu M, Xu Y, Liu S, Yin S, Liu M, Wang Z, Li X, Wang L, Wang H. Journal of Materials Chemistry A, 2021, 9(8): 5026.

[23]

Liu L, Corma A. Nature Catalysis, 2021, 4(6): 453.

[24]

Liu C, Shviro M, Gago A S, Zaccarine S F, Bender G, Gazdzicki P, Morawietz T, Biswas I, Rasinski M, Everwand A, Schierholz R, Pfeilsticker J, Müller M, Lopes P P, Eichel R A, Pivovar B, Pylypenko S, Friedrich K A, Lehnert W, Carmo M. Advanced Energy Materials, 2021, 11(8): 2002926.

[25]

Kwon I S, Kwak I H, Ju S, Kang S, Han S, Park Y C, Park J, Park J. ACS Nano, 2020, 14(9): 12184.

[26]

Mukherjee A, Su W-N, Pan C-J, Basu S. Journal of Electroanalytical Chemistry, 2021, 882: 115006.

[27]

Cheng X, Yang J, Yan W, Han Y, Qu X, Yin S, Chen C, Ji R, Li Y, Li G, Li G, Jiang Y, Sun S. Energy & Environmental Science, 2021, 14(11): 5958.

[28]

Zhou K L, Wang C, Wang Z, Han C B, Zhang Q, Ke X, Liu J, Wang H. Energy & Environmental Science, 2020, 13(9): 3082.

[29]

Li J, Sougrati M T, Zitolo A, Ablett J M, Oğuz I C, Mineva T, Matanovic I, Atanassov P, Huang Y, Zenyuk I, Di Cicco A, Kumar K, Dubau L, Maillard F, Dražić G, Jaouen F. Nature Catalysis, 2021, 4(1): 10.

[30]

Zhou M, Li H, Long A, Zhou B, Lu F, Zhang F, Zhan F, Zhang Z, Xie W, Zeng X, Yi D, Wang X. Advanced Energy Materials, 2021, 11(36): 2101789.

[31]

Wang Y, Liu B, Shen X, Arandiyan H, Zhao T, Li Y, Garbrecht M, Su Z, Han L, Tricoli A, Zhao C. Advanced Energy Materials, 2021, 11(16): 2003759.

[32]

Liu S, Qian T, Wang M, Ji H, Shen X, Wang C, Yan C. Nature Catalysis, 2021, 4(4): 322.

[33]

Li Y, Pillai H S, Wang T, Hwang S, Zhao Y, Qiao Z, Mu Q, Karakalos S, Chen M, Yang J, Su D, Xin H, Yan Y, Wu G. Energy & Environmental Science, 2021, 14(3): 1449.

[34]

Palaniappan R, Botte G G. The Journal of Physical Chemistry C, 2013, 117(34): 17429.

[35]

Gong K, Du F, Xia Z, Durstock M, Dai L. Science, 2009, 323(5915): 760.

[36]

Pan Z, Huang B, An L. International Journal of Energy Research, 2019, 43(7): 2583.

[37]

Shu C, Song B, Wei X, Liu Y, Tan Q, Chong S, Chen Y, Yang X-D, Yang W-H, Liu Y. Carbon, 2018, 129: 613.

[38]

Shu C, Chen Y, Yang X-D, Liu Y, Chong S, Fang Y, Liu Y, Yang W-H. Journal of Power Sources, 2018, 376: 161.

[39]

Lu Y. Z. B., Shi J., Yun S., Energy Mater., 2021, (1), 100007

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/