Atomically Dispersed Fe-N4 Sites and Fe3C Particles Catalyzing Polysulfides Conversion in Li-S Batteries

Weijie Chen , Huicong Xia , Kai Guo , Wangzhe Jin , Yu Du , Wenfu Yan , Gan Qu , Jianan Zhang

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5) : 1232 -1238.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5) : 1232 -1238. DOI: 10.1007/s40242-022-2222-7
Article

Atomically Dispersed Fe-N4 Sites and Fe3C Particles Catalyzing Polysulfides Conversion in Li-S Batteries

Author information +
History +
PDF

Abstract

Lithium-sulfur(Li-S) batteries have been puzzled by the “shuttle effect”. In the recent years, catalytic materials present a huge potential for solving this problem. However, the exploitation for catalytic activity was still challenging in Li-S batteries. In this article, we put forward a single atom catalyst (SAC) of FeN4 coupled with Fe3C on the N-doped carbon (FeN4/Fe3C@NC) by one-step pyrolysis method. The FeN4 and Fe3C synergistically catalyze the polysulfides conversion when the N-doped carbon provides the high conductive three-dimensional skeleton in Li-S batteries. As a result, the FeN4/Fe3C@NC shows a specific capacity of 1100 mA·h/g at 0.2 C(1 C=1675 mA/g). In addition, the FeN4/Fe3C@NC maintains 99.01% of the pristine specific capacity after 100 cycles at 0.5 C, indicating the improved electrochemical performance in Li-S batteries. This work sheds new lights on the design of engineering catalysts for developing high-performance Li-S batteries.

Keywords

FeN4 / Fe3C / Li-S battery / Shuttle effect

Cite this article

Download citation ▾
Weijie Chen, Huicong Xia, Kai Guo, Wangzhe Jin, Yu Du, Wenfu Yan, Gan Qu, Jianan Zhang. Atomically Dispersed Fe-N4 Sites and Fe3C Particles Catalyzing Polysulfides Conversion in Li-S Batteries. Chemical Research in Chinese Universities, 2022, 38(5): 1232-1238 DOI:10.1007/s40242-022-2222-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Seh Z W, Sun Y, Zhang Q, Cui Y. Chem. Soc. Rev., 201, 45: 5605.

[2]

Li G, Chen Z, Lu J. Chem, 2018, 4: 3.

[3]

Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Nat. Mater., 2011, 11: 19.

[4]

Wei Seh Z, Li W, Cha J J, Zheng G, Yang Y, McDowell M T, Hsu P C, Cui Y. Nat. Commun., 2013, 4: 1331.

[5]

He J, Manthiram A. Energy Storage Mater., 2019, 20: 55.

[6]

Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar L F. Nat. Commun., 2015, 6: 5682.

[7]

Hua W, Yang Z, Nie H, Li Z, Yang J, Guo Z, Ruan C, Chen X, Huang S. ACS Nano, 2017, 11: 2209.

[8]

He Y, Qiao Y, Chang Z, Cao X, Jia M, He P, Zhou H. Angew. Chem., Int. Ed., 2019, 58: 11774.

[9]

Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns E J, Zhang Y. J. Am. Chem. Soc., 2011, 133: 18522.

[10]

Wang C, Song H, Yu C, Ullah Z, Guan Z, Chu R, Zhang Y, Zhao L, Li Q, Liu L. J. Mater. Chem. A, 2020, 8: 3421.

[11]

Wang Y, Adekoya D, Sun J, Tang T, Qiu H, Xu L, Zhang S, Hou Y. Adv. Funct. Mater., 2018, 29: 1807485.

[12]

Zhang Y, Liu J, Wang J, Zhao Y, Luo D, Yu A, Wang X. Chen Z., Angew. Chem., Int. Ed., 2021, 60: 26622.

[13]

Guo K, Qu G, Li J, Xia H, Yan W, Fu J, Yuan P, Zhang J. Energy Storage Mater., 2021, 36: 496.

[14]

He Y, Qiao Y, Chang Z, Cao X, Jia M, He P, Zhou H. Angew. Chem., Int. Ed., 2019, 58: 11774.

[15]

Zheng M, Chi Y, Hu Q, Tang H, Jiang X, Zhang L, Zhang S, Pang H, Xu Q. J. Mater. Chem. A, 2019, 7(29): 17204.

[16]

Qiu Y, Fan L, Wang M, Yin X, Wu X, Sun X, Tian D, Guan B, Tang D, Zhang N. ACS Nano, 2020, 14: 16105.

[17]

Chen W, Lei T, Wu C, Deng M, Gong C, Hu K, Ma Y, Dai L, Lv W, He W, Liu X, Xiong J, Yan C. Adv. Energy Mater., 2018, 8: 1702348.

[18]

Gupta A, Bhargav A, Manthiram A. Adv. Energy Mater., 2019, 9: 1803096.

[19]

Su Y S, Manthiram A. Nat. Commun., 2012, 3: 1166.

[20]

Fan L, Li M, Li X, Xiao W, Chen Z, Lu J. Joule, 2019, 3: 361.

[21]

Cui X, Gao L, Lei S, Liang S, Zhang J, Sewell C D, Xue W, Liu Q, Lin Z, Yang Y. Adv. Funct. Mater., 2020, 31: 2009197.

[22]

Xu S, Yin H, Xue D, Xia H, Zhao S, Yan W, Mu S, Zhang J. Chem. J. Chinese Universities, 2022, 43(5): 20220028.

[23]

Zhang X, Xue D, Du Y, Jiang S, Wei Y, Yan W, Xia H, Zhang J. Chem. J. Chinese Universities, 2022, 43(3): 20210689.

[24]

Liu Z, Zhou L, Ge Q, Chen R, Ni M, Utetiwabo W, Zhang X, Yang W. ACS Appl. Mater. Interfaces, 2018, 10: 19311.

[25]

Wang J, Jia L, Zhong J, Xiao Q, Wang C, Zang K, Liu H, Zheng H, Luo J, Yang J, Fan H, Duan W, Wu Y, Lin H, Zhang Y. Energy Storage Mater., 2019, 18: 246.

[26]

Wang S, Liu X, Duan H, Deng Y, Chen G. Chem. Eng. J., 2021, 415: 129001.

[27]

Wang J, Qiu W, Li G, Liu J, Luo D, Zhang Y, Zhao Y, Zhou G, Shui L, Wang X, Chen Z. Energy Storage Mater., 2021, 18: 246.

[28]

Xia H, Yuan P, Zan L, Qu G, Tu Y, Zhu K, Wei Y, Wei Z, Zheng F, Zhang M, Hu Y, Deng D, Zhang J. Nano Research, 2021, 15: 7154.

[29]

Ayako K, Soichi S, Yoshinari Y, Ryuichi A, Toshikazu T. Phys. Chem. Chem. Phys., 2014, 16: 9344.

[30]

Wang P, Xi B, Huang M, Chen W, Feng J, Xiong S. Adv. Energy Mater., 2021, 11: 2002893.

[31]

Ogihara N, Kawauchi S, Okuda C, Itou Y, Takeuchi Y, Ukyo Y. J. Electrochem. Soc., 2012, 159: A1034.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/