Covalent Organic Frameworks Based Single-site Electrocatalysts for Oxygen Reduction Reaction

Ran Bu , Yingying Lu , Bing Zhang

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5) : 1151 -1162.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5) : 1151 -1162. DOI: 10.1007/s40242-022-2219-2
Review

Covalent Organic Frameworks Based Single-site Electrocatalysts for Oxygen Reduction Reaction

Author information +
History +
PDF

Abstract

Single site catalysts(SSCs) are a new type of heterogeneous catalysts formed by isolated metal atoms supported on kinds of substrates. SSCs have shown great potential for energy conversion and storage in recent years, especially for oxygen reduction reactions(ORR). Typically, SSCs are confined on the substrate by strong chemical interactions, such as coordination bonds. Therefore, the surface chemical environment and porous properties of the supports are crucial to the performance of SSCs. In recent years, COFs have become excellent candidates for preparing SSCs as they can precisely assemble monomers into highly ordered crystalline porous materials with a fine structure and definite components. In this review, we not only summarize the characteristics and advantages of COFs based SSCs, but also highlight the applications of COFs constructed from different single active sites for ORR in recent years. Finally, challenges in practical application, feasible strategies and perspectives are proposed for the of COFs based SSCs.

Keywords

Covalent organic framework / Oxygen reduction reaction / Single site catalyst / Energy conversion / Carbon-based catalyst

Cite this article

Download citation ▾
Ran Bu, Yingying Lu, Bing Zhang. Covalent Organic Frameworks Based Single-site Electrocatalysts for Oxygen Reduction Reaction. Chemical Research in Chinese Universities, 2022, 38(5): 1151-1162 DOI:10.1007/s40242-022-2219-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Steele B C, Heinzel A. Nature, 2001, 414: 345.

[2]

Zhu C, Fu S, Shi Q, Du D, Lin Y. Angew. Chem. Int. Ed., 2017, 56: 13944.

[3]

Yang D H, Tao Y, Ding X, Han B H. Chem. Soc. Rev., 2022, 51: 761.

[4]

Fan L, Xia C, Zhu P, Lu Y, Wang H. Nat. Commun., 2020, 11: 1.

[5]

Zhao S Y, Zhang B, Su H, Zhang J J, Li X H, Wang K X, Chen J S, Wei X, Feng P. J. Mater. Chem. A, 2018, 6: 4331.

[6]

Cheng F, Chen J. Chem. Soc. Rev., 2012, 41: 2172.

[7]

Zhang B, Qiu C, Wang S, Gao H, Yu K, Zhang Z, Ling X, Ou W, Su C. Sci. Bull., 2021, 66: 562.

[8]

Huang B, Li L, Tang X, Zhai W, Hong Y, Hu T, Yuan K, Chen Y. Energy Environ. Sci., 2021, 14: 2789.

[9]

Shao M H, Chang Q W, Dodelet J P, Chenitz R. Chem. Rev., 201, 116: 3594.

[10]

Liang Z, Wang H Y, Zheng H, Zhang W, Cao R. Chem. Soc. Rev., 2021, 50: 2540.

[11]

Zhou M, Wang H L, Guo S J. Chem. Soc. Rev., 201, 45: 1273.

[12]

Li Y, Wei B, Zhu M, Chen J, Jiang Q, Yang B, Hou Y, Lei L, Li Z, Zhang R, Lu Y. Adv. Mater., 2021, 33: 2102212.

[13]

Wang A, Li J, Zhang T. Nat. Rev. Chem., 2018, 2: 65.

[14]

Liu L, Corma A. Chem. Rev., 2018, 118: 4981.

[15]

Chen Y, Ji S, Chen C, Peng Q, Wang D, Li Y. Joule, 2018, 2: 1242.

[16]

Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J, Zhang T. Nat. Chem., 2011, 3: 634.

[17]

Diercks C S, Yaghi O M. Science, 2017, 355: aal1585.

[18]

Geng K, He T, Liu R, Dalapati S, Tan K T, Li Z, Tao S, Gong Y, Jiang Q, Jiang D. Chem. Rev., 2020, 120: 8814.

[19]

Liu R, Tan K T, Gong Y, Chen Y, Li Z, Xie S, He T, Lu Z, Yang H, Jiang D. Chem. Soc. Rev., 2021, 50: 120.

[20]

Freund R, Zaremba O, Arnauts G, Ameloot R, Skorupskii G, Dinca M, Bavykina A, Gascon J, Ejsmont A, Goscianska J, Kalmutzki M, Lachelt U, Ploetz E, Diercks C S, Wuttke S. Angew. Chem., Int. Ed., 2021, 60: 23975.

[21]

Cote A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310: 1166.

[22]

Liu Y, Wu C, Sun Q, Hu F, Pan Q, Sun J, Jin Y, Li Z, Zhang W, Zhao Y. CCS Chem., 2021, 3: 2418.

[23]

Wu S, Li M, Phan H, Wang D, Herng T S, Ding J, Lu Z, Wu J. Angew., 2018, 57: 8007.

[24]

Guo J, Lin C-Y, Xia Z, Xiang Z. Angew. Chem. Int. Ed., 2018, 57: 12567.

[25]

Royuela S, Martinez-Perinan E, Arrieta M P, Martinez J I, Ramos M M, Zamora F, Lorenzo E, Segura J L. Chem. Commun., 2020, 56: 1267.

[26]

Zhang M, Lai C, Xu F, Huang D, Liu S, Fu Y, Li L, Yi H, Qin L, Chen L. Coord. Chem. Rev., 2022, 466: 214592.

[27]

Li J, Jing X, Li Q, Li S, Gao X, Feng X, Wang B. Chem. Soc. Rev., 2020, 49: 3565.

[28]

Kong L, Zhong M, Shuang W, Xu Y, Bu X H. Chem. Soc. Rev., 2020, 49: 2378.

[29]

Zhao X, Pachfule P, Thomas A. Chem. Soc. Rev., 2021, 50: 6871.

[30]

Li D, Li C, Zhang L, Li H, Zhu L, Yang D, Fang Q, Qiu S, Yao X. J. Am. Chem. Soc., 2020, 142: 8104.

[31]

Zhao X, Pachfule P, Li S, Langenhahn T, Ye M, Schlesiger C, Praetz S, Schmidt J, Thomas A. J. Am. Chem. Soc., 2019, 141: 6623.

[32]

Yan S, Guan X, Li H, Li D, Xue M, Yan Y, Valtchev V, Qiu S, Fang Q. J. Am. Chem. Soc., 2019, 141: 2920.

[33]

Bu R, Zhang L, Gao L L, Sun W J, Yang S L, Gao E Q. Mol. Catal., 2021, 499: 111319.

[34]

Sun T, Liang Y, Xu Y. Angew. Chem. Int. Ed., 2021, 61: e202113926.

[35]

Haase F, Lotsch B V. Chem. Soc. Rev., 2020, 49: 8469.

[36]

Zhi Y., Wang Z., Zhang H. L., Zhang Q., Small, 2020, 16, e2001070

[37]

Li J, Liu P, Mao J, Yan J, Song W. Nanoscale, 2022, 16: 6126.

[38]

Yang Y L, Wang Y R, Gao G K, Liu M, Miao C, Li L Y, Cheng W, Zhao Z Y, Chen Y, Xin Z, Li S L, Li D-S, Lan Y Q. Chin. Chem. Lett., 2021, 33: 1439.

[39]

Wang Y R, Ding H M, Ma X Y, Liu M, Yang Y L, Chen Y, Li S L, Lan Y Q. Angew. Chem. Int. Ed., 2021, 61: e202114648.

[40]

Feng J, Zhang Y J, Ma S H, Yang C, Wang Z P, Ding S Y, Li Y, Wang W. J. Am. Chem. Soc., 2022, 144: 6594.

[41]

Wang Y, Liu H, Pan Q, Wu C, Hao W, Xu J, Chen R, Liu J, Li Z, Zhao Y. J. Am. Chem. Soc., 2020, 142: 5958.

[42]

Wang K, Jia Z, Bai Y, Wang X, Hodgkiss S E, Chen L, Chong S Y, Wang X, Yang H, Xu Y, Feng F, Ward J W, Cooper A I. J. Am. Chem. Soc., 2020, 142: 11131.

[43]

Lu M, Zhang M, Liu C G, Liu J, Shang L J, Wang M, Chang J N, Li S L, Lan Y Q. Angew. Chem, Int. Ed., 2021, 60: 4864.

[44]

Gole B, Stepanenko V, Rager S, Gruene M, Medina D D, Bein T, Wuerthner F, Beuerle F. Angew. Chem. Int. Ed., 2018, 57: 846.

[45]

Zhu D, Zhu Y, Yan Q, Barnes M, Liu F, Yu P, Tseng C P, Tjahjono N, Huang P C, Rahman M M, Egap E, Ajayan P M, Verduzco R. Chem. Mater., 2021, 33: 4216.

[46]

Martin-Illan J A, Rodriguez-San-Miguel D, Castillo O, Beobide G, Perez-Carvajal J, Imaz I, Maspoch D, Zamora F. Angew. Chem. Int. Ed., 2021, 60: 13969.

[47]

Karak S, Dey K, Torris A, Halder A, Bera S, Kanheerampockil F, Banerjee R. J. Am. Chem. Soc., 2019, 141: 7572.

[48]

Karak S, Kandambeth S, Biswal B P, Sasmal H S, Kumar S, Pachfule P, Banerjee R. J. Am. Chem. Soc., 2017, 139: 1856.

[49]

Tao S, Xu H, Xu Q, Hijikata Y, Jiang Q, Irle S, Jiang D. J. Am. Chem., 2021, 143: 8970.

[50]

Wang X, Shi B, Yang H, Guan J, Liang X, Fan C, You X, Wang Y, Zhang Z, Wu H, Cheng T, Zhang R, Jiang Z. Nat. Commun., 2022, 13: 1020.

[51]

Liu L, Yin L, Cheng D, Zhao S, Zang H Y, Zhang N, Zhu G. Angew. Chem. Int. Ed., 2021, 60: 14875.

[52]

Gao H, Neale A R, Zhu Q, Bahri M, Wang X, Yang H, Xu Y, Clowes R, Browning N D, Little M A, Hardwick L J, Cooper A I. J. Am. Chem. Soc., 2022, 144: 9434.

[53]

Guo C, Liu M, Gao G K, Tian X, Zhou J, Dong L Z, Li Q, Chen Y, Li S L, Lan Y Q. Angew. Chem. Int. Ed., 2022, 61: e202113315.

[54]

Zhao J, Ying Y, Wang G, Hu K, Yuan Y D, Ye H, Liu Z, Lee J Y, Zhao D. Energy Storage Mater., 2022, 48: 82.

[55]

Samineni L, Kumar M. Nat. Nanotechnol., 2022, 17: 564.

[56]

Hou S, Ji W, Chen J, Teng Y, Wen L, Jiang L. Angew. Chem., Int. Ed., 2021, 60: 9925.

[57]

Halder A, Ghosh M, Khayum M A, Bera S, Addicoat M, Sasmal H S, Karak S, Kurungot S, Banerjee R. J. Am. Chem. Soc., 2018, 140: 10941.

[58]

Hao Q, Zhao C, Sun B, Lu C, Liu J, Liu M, Wan L J, Wang D. J. Am. Chem. Soc., 2018, 140: 12152.

[59]

Dey K, Pal M, Rout K C, Kunjattu H S, Das A, Mukherjee R, Kharul U K, Banerjee R. J. Am. Chem. Soc., 2017, 139: 13083.

[60]

Zhang P, Chen S, Zhu C, Hou L, Xian W, Zuo X, Zhang Q, Zhang L, Ma S, Sun Q. Nat. Commun., 2021, 12: 1844.

[61]

Fan C, Wu H, Guan J, You X, Yang C, Wang X, Cao L, Shi B, Peng Q, Kong Y, Wu Y, Khan N A, Jiang Z. Angew. Chem., Int. Ed., 2021, 60: 18051.

[62]

Zhang Z, Wang W, Wang X, Zhang L, Cheng C, Liu X. Chem. Eng. J., 2022, 435: 133872.

[63]

Yue J Y, Wang Y T, Wu X, Yang P, Ma Y, Liu X H, Tang B. Chem. Commun., 2021, 57: 12619.

[64]

Liu M, Wen Y, Lu L, Kang Q, Xie Z, Chen Y, Tian X, Jin H, Liu J. Chemelectrochem, 2021, 8: 4490.

[65]

Lei Z, Lucas F W S, Canales Moya E, Huang S, Rong Y, Wesche A, Li P, Bodkin L, Jin Y, Holewinski A, Zhang W. Chin. Chem. Lett., 2021, 32: 3799.

[66]

Zhai L, Yang S, Yang X, Ye W, Wang J, Chen W, Guo Y, Mi L, Wu Z, Soutis C, Xu Q, Jiang Z. Chem. Mater., 2020, 32: 9747.

[67]

Liu J, Cheng T, Jiang L, Zhang H, Shan Y, Kong A. Electrochim. Acta, 2020, 363: 137280.

[68]

Peng P, Shi L, Huo F, Mi C, Wu X, Zhang S, Xiang Z. Sci. Adv., 2019, 5: eaaw2322.

[69]

Yi J D, Xu R, Wu Q, Zhang T, Zang K T, Luo J, Liang Y L, Huang Y B, Cao R. ACS Energy Lett., 2018, 3: 883.

[70]

Zuo Q, Cheng G, Luo W. Dalton Trans., 2017, 46: 9344.

[71]

Yang S, Li X, Tan T, Mao J, Xu Q, Liu M, Miao Q, Mei B, Qiao P, Gu S, Sun F, Ma J, Zeng G, Jiang Z. Appl. Catal., B, 2022, 307: 121147.

[72]

Wang Z, Zhou L, Li R, Qu K, Wang L, Kang W, Li H, Xiong S. Microporous Mesoporous Mater., 2022, 330: 111609.

[73]

Pei F, Chen M, Kong F, Huang Y, Cui X. Appl. Surf. Sci., 2022, 587: 152922.

[74]

Miao Q, Yang S, Xu Q, Liu M, Wu P, Liu G, Yu C, Jiang Z, Sun Y, Zeng G. Small Struct., 2022, 3: 2100225.

[75]

Liu M, Xu Q, Miao Q, Yang S, Wu P, Liu G, He J, Yu C, Zeng G. J. Mater. Chem. A, 2022, 10: 228.

[76]

Huang Y, Kong F, Tian H, Pei F, Chen Y, Meng G, Chang Z, Chen C, Cui X, Shi J. ACS Sustainable Chem. Eng., 2022, 10: 6370.

[77]

Park J H, Lee C H, Ju J M, Lee J H, Seol J, Lee S U, Kim J H. Adv. Funct. Mater., 2021, 31: 2101727.

[78]

Jiang T, Jiang W, Li Y, Xu Y, Zhao M, Deng M, Wang Y. Carbon, 2021, 180: 92.

[79]

Guo Y, Yang S, Xu Q, Wu P, Jiang Z, Zeng G. J. Mater. Chem. A, 2021, 9: 13625.

[80]

Zhang X, Liu L, Liu J, Cheng T, Kong A, Qiao Y, Shan Y. J. Alloys Compd., 2020, 824: 153958.

[81]

Zhang S, Xia W, Yang Q, Kaneti Y V, Xu X, Alshehri S M, Ahamad T, Hossain M S A, Na J, Tang J, Yamauchi Y. Chem. Eng. J., 2020, 396: 125154.

[82]

Xu Q, Qian J, Luo D, Liu G, Guo Y, Zeng G. Adv. Sustainable Syst., 2020, 4: 2000115.

[83]

Wei S, Wang Y, Chen W, Li Z, Cheong W C, Zhang Q, Gong Y, Gu L, Chen C, Wang D, Peng Q, Li Y. Chem. Sci., 2020, 11: 786.

[84]

Roy S, Mari S, Sai M K, Sarma S C, Sarkar S, Peter S C. Nanoscale, 2020, 12: 22718.

[85]

Li R, Xing L, Chen A, Zhang X, Kong A, Shan Y. Ionics, 2020, 26: 927.

[86]

Chen H, Li Q H, Yan W, Gu Z G, Zhang J. Chem. Eng. J., 2020, 401: 126149.

[87]

Zhao X, Pachfule P, Li S, Langenhahn T, Ye M, Tian G, Schmidt J, Thomas A. Chem. Mater., 2019, 31: 3274.

[88]

Xu Q, Zhang H, Guo Y, Qian J, Yang S, Luo D, Gao P, Wu D, Li X, Jiang Z, Sun Y. Small, 2019, 15: e1905363.

[89]

Wu D, Xu Q, Qian J, Li X, Sun Y. Chem. Eur. J., 2019, 25: 3105.

[90]

Kong F, Fan X, Zhang X, Wang L, Kong A, Shan Y. Carbon, 2019, 149: 471.

[91]

Kong F, Fan X, Kong A, Zhou Z, Zhang X, Shan Y. Adv. Funct. Mater., 2018, 28: 1803973.

[92]

Zuo Q, Zhao P, Luo W, Cheng G. Nanoscale, 201, 8: 14271.

[93]

Lin Q P, Bu X H, Kong A G, Mao C Y, Bu F, Feng P Y. Adv. Mater., 2015, 27: 3431.

[94]

Ji W, Wang T X, Ding X, Lei S, Han B H. Coord. Chem. Rev., 2021, 439: 213875.

[95]

Yang Q, Luo M, Liu K, Cao H, Yan H. Appl. Catal., B, 2020, 276: 119174.

[96]

Sun Q, Aguila B, Perman J, Nguyen N, Ma S. J. Am. Chem. Soc., 201, 138: 15790.

[97]

Chen J, Tao X, Tao L, Li H, Li C, Wang X, Li C, Li R, Yang Q. Appl. Catal., B, 2019, 241: 461.

[98]

Kumar G, Singh M, Goswami R, Neogi S. ACS Appl. Mater. Interfaces, 2020, 12: 48642.

[99]

Bu R, Zhang L, Liu X Y, Yang S L, Li G, Gao E Q. ACS Appl. Mater. Interfaces, 2021, 13: 26431.

[100]

Zhang L, Bu R, Liu X Y, Mu P F, Gao E Q. Green Chem., 2021, 23: 7620.

[101]

Qian C, Zhou W, Qiao J, Wang D, Li X, Teo W L, Shi X, Wu H, Di J, Wang H, Liu G, Gu L, Liu J, Feng L, Liu Y, Quek S Y, Loh K P, Zhao Y. J. Am. Chem. Soc., 2020, 142: 18138.

[102]

Aiyappa H B, Thote J, Shinde D B, Banerjee R, Kurungot S. Chem. Mater., 201, 28: 4375.

[103]

Ma Y X, Li Z J, Wei L, Ding S Y, Zhang Y B, Wang W. J. Am. Chem. Soc., 2017, 139: 4995.

[104]

Tang J, Su C, Shao Z. Small Methods, 2021, 5: 2100945.

[105]

Liu M, Xu Q, Miao Q, Yang S, Wu P, Liu G, He J, Yu C, Zeng G. J. Mater. Chem. A, 2021, 10: 228.

[106]

Zhou G, Liu G, Liu X, Yu Q, Mao H, Xiao Z, Wang L. Adv. Funct. Mater., 2022, 32: 2107608.

[107]

Zhang C, Yang H, Zhong D, Xu Y, Wang Y, Yuan Q, Liang Z, Wang B, Zhang W, Zheng H, Cheng T, Cao R. J. Mater. Chem. A, 2020, 8: 9536.

[108]

Wang Y, Sun P F, Zhang C, Huang Z, Dang J, Liu X, Bao Z, Ma X, Zhang W, Cao R, Zheng H. ChemCatChem, 2022, 14: e2022001.

[109]

Tan H, Li Y, Jiang X, Tang J, Wang Z, Qian H, Mei P, Malgras V, Bando Y, Yamauchi Y. Nano Energy, 2017, 36: 286.

[110]

Zhang X, Xu X, Yao S, Hao C, Pan C, Xiang X, Tian Z Q, Shen P K, Shao Z, Jiang S P. Small, 2022, 18: e2105329.

[111]

Li Z, Gan Q, Zhang Y, Hu J, Liu P, Xu C, Wu X, Ge Y, Wang F, Yao Q, Lu Z, Deng J. Nano Res., 2021, 15: 217.

[112]

Chen Z, Gao X, Wei X, Wang X, Li Y, Wu T, Guo J, Gu Q, Wu W D, Chen X D, Wu Z, Zhao D. Carbon, 2017, 121: 143.

[113]

Son H, Kim S, Lee J H, Li O L. J. Phys. D: Appl. Phys., 2021, 55: 074001.

[114]

Zhang B, Wang S, Qiu C, Xu Y, Zuo J. Appl. Surf. Sci., 2022, 573: 151506.

[115]

Fan L, Bai X, Xia C, Zhang X, Zhao X, Xia Y, Wu Z Y, Lu Y, Liu Y, Wang H. Nat. Commun., 2022, 13: 2668.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/