Full Metal Species Quantification of Metal Supported Catalysts Through Massive TEM Images Recognition

Shuhui Liu , Fan Zhang , Ronghe Lin , Wei Liu

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5) : 1263 -1267.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5) : 1263 -1267. DOI: 10.1007/s40242-022-2218-3
Article

Full Metal Species Quantification of Metal Supported Catalysts Through Massive TEM Images Recognition

Author information +
History +
PDF

Abstract

For a practical high-loading single-atom catalyst, it is prone to forming diverse metal species owing to either the synthesis inhomogeneity or the reaction induced aggregation. The diversity of this metal species challenges the discerning about the contributions of specific metal species to the catalytic performance, and thus hampers the rational catalyst design. In this paper, a distinct solution of dispersion analysis based on transmission electron microscopy imaging specialized for metal-supported catalysts has been proposed in the capability of full-metal-species quantification(FMSQ) from single atoms to nanoparticles, including dispersion densities, shape geometry, and crystallographic surface exposure. This solution integrates two image-recognition algorithms including the electron microscopy-based atom recognition statistics (EMARS) for single atoms and U-Net type deep learning network for nanoparticles in different shapes. When applied to the C3N4- and nitrogen-doped carbon-supported catalysts, the FMSQ method successfully identifies the specific activity contributions of Au single atoms and particles in butadiene hydrogenation, which presents remarkable variation with the metal species constitution. This work demonstrates a promising value of our FMSQ strategy for identifying the activity origin of heterogeneous catalysis.

Keywords

Single atom recognition algorithm / U-Net type network / Full metal species quantification / Transmission electron microscopy (TEM) image

Cite this article

Download citation ▾
Shuhui Liu, Fan Zhang, Ronghe Lin, Wei Liu. Full Metal Species Quantification of Metal Supported Catalysts Through Massive TEM Images Recognition. Chemical Research in Chinese Universities, 2022, 38(5): 1263-1267 DOI:10.1007/s40242-022-2218-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang X-F, Wang A, Qiao B, Li J, Liu J, Zhang T. Accounts Chem. Res., 2013, 46: 1740.

[2]

Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J, Zhang T. Nat. Chem., 2011, 3: 634.

[3]

Zhao Y F, Zhou H, Zhu X R, Qu Y T, Xiong C, Xue Z G, Zhang Q W, Liu X K, Zhou F Y, Mou X M, Wang W Y, Chen M, Xiong Y, Lin X G, Lin Y, Chen W X, Wang H J, Jiang Z, Zheng L R, Yao T, Dong J C, Wei S Q, Huang W X, Gu L, Luo J, Li Y F, Wu Y E. Nature Catal., 2021, 4: 134.

[4]

Cheng N, Zhang L, Doyle-Davis K, Sun X. Electrochem. Energy Rev., 2019, 2: 539.

[5]

Liu L C, Corma A. Chem. Rev., 2018, 118: 4981.

[6]

Fultz B., Howe J., Fultz B.; Eds. Howe J., High-Resolution STEM and Related Imaging Techniques in Transmission Electron Microscopy and Diffractometry of Materials(Graduate Texts in Physics), Springer, Berlin Heidelberg, 2013, 587

[7]

Han Y., Duan X., Zhu B., Gao Y., Wiley Interdiscip. Rev.-Comput. Mol. Sci., 2021, e1587

[8]

Dessal C, Len T, Morfin F, Rousset J-L, Aouine M, Afanasiev P, Piccolo L. ACS Catal., 2019, 9: 5752.

[9]

Bayram E, Lu J, Aydin C, Browning N D, Ozkar S, Finney E, Gates B C, Finke R G. ACS Catal., 2015, 5: 3514.

[10]

Shan J Q, Ye C, Chen S M, Sun T L, Jiao Y, Liu L M, Zhu C Z, Song L, Han Y, Jaroniec M, Zhu Y H, Zheng Y, Qiao S Z. J. Am. Chem. Soc., 2021, 143: 5201.

[11]

Gu J, Jian M Z, Huang L, Sun Z H, Li A W, Pan Y, Yang J Z, Wen W, Zhou W, Lin Y, Wang H J, Liu X Y, Wang L L, Shi X X, Huang X H, Cao L N, Chen S, Zheng X S, Pan H B, Zhu J F, Wei S Q, Li W X, Lu J L. Nat. Nanotechnol., 2021, 16: 1141.

[12]

Liu S, Xu H, Liu D, Yu H, Zhang F, Zhang P, Zhang R, Liu W. J. Am. Chem. Soc., 2021, 143: 15243.

[13]

Catherine G, Christina C, Scott M C. Microsc. Microanal., 2020, 27: 549.

[14]

Horwath J P, Zakharov D N, Megret R, Stach E A. NPJ Comput. Mater., 2020, 6: 108.

[15]

Saaim K M, Afridi S K, Nisar M, Islam S. Ultramicroscopy, 2022, 233: 113437.

[16]

Ge M S, Liu X Z, Zhao Z C, Su F, Gu L, Su D. Adv. Theory Simul., 2022, 5: 2100337.

[17]

Mitchell S, Pares F, Akl D F, Collins S M, Kepaptsoglou D M, Ramasse Q M, Garcia-Gasulla D, Perez-Ramirez J, Lopez N. J. Am. Chem. Soc., 2022, 144: 8018.

[18]

Ronneberger O, Fischer P, Brox T. Medical Image Computing and Computer-Assisted Intervention — MICCAI 2015, 2015, Munich: Springer

[19]

Jiang Y, Chen Z, Hang Y M, Deb P, Gao H, Xie S E, Purohit P, Tate M W, Park J, Gruner S M, Elser V, Muller D A. Nature, 2018, 559: 343.

[20]

Lin R, Albani D, Fako E, Kaiser S K, Safonova O V, Lopez N, Perez-Ramirez J. Angew. Chem. Int. Edit., 2019, 58: 504.

[21]

Howard A., Zhu M., Chen B., Kalenichenko D., Wang W., Weyand T., Andreetto M., Adam H., ArXiv e-Prints, 2017, ArXiv:1704.04861

[22]

Wada K., 2016, Available from: https://plzhai.github.io/labelme/.

[23]

Yang S., Xiao W., Zhang M., Guo S., Zhao J., Shen F., ArXiv e-prints, 2022, arXiv:2204.08610

[24]

Kingma P. D. Ba J., ArXiv e-Prints, 2014, arXiv:1412.6980

[25]

Cox E P. J. Paleontol., 1927, 1: 179.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/