Carrier Dynamics and Surface Reaction Boosted by Polymer-based Single-atom Photocatalysts

Zhenyuan Teng , Hongbin Yang , Qitao Zhang , Teruhisa Ohno

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5) : 1207 -1218.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5) : 1207 -1218. DOI: 10.1007/s40242-022-2215-6
Perspective

Carrier Dynamics and Surface Reaction Boosted by Polymer-based Single-atom Photocatalysts

Author information +
History +
PDF

Abstract

Carrier dynamics and surface reaction are two critical processes for determining the performance of photocatalytic reaction. Highly designable polymer-based photocatalysts have shown promising protectives in energetic and environmental applications. In this prospective, we first distinguished the differences of physiochemical properties between polymer-based semiconductors and traditional inorganic semiconductors. Then, the effects of single-atom sites on the charge dynamics and reaction kinetics of polymer-based photocatalysts are further elaborated. Time(excitation)-space(wavefunction) population analysis, which can provide relevant information to clarify the structure-excitation relationships after introducing the single atom sites was also reviewed. In the future, with the further development of artificial intelligence, the establishment of an energy function with a regression accuracy close to or reaching the level of density functional theory is highly desired to infer the energetic diagram of the photocatalytic systems at the excited states. Furthermore, coordination structures, interaction with inorganic semiconductors, photocatalytic stability and solvent effects should also be carefully considered in the future studies of polymer-based photocatalyst.

Keywords

Carrier dynamics / Surface reaction / Polymer / Single-atom catalyst / Dielectric property

Cite this article

Download citation ▾
Zhenyuan Teng, Hongbin Yang, Qitao Zhang, Teruhisa Ohno. Carrier Dynamics and Surface Reaction Boosted by Polymer-based Single-atom Photocatalysts. Chemical Research in Chinese Universities, 2022, 38(5): 1207-1218 DOI:10.1007/s40242-022-2215-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Qiao B, Wang A, Yang X, Lawrence F A, Jiang Z, Cui Y, Liu J, Li J, Zhang T. Nat. Chem., 2011, 3: 634.

[2]

Wang A, Li J, Zhang T. Nat. Rev. Chem., 2018, 2: 65.

[3]

Lang R, Du X, Huang Y, Jiang X, Zhang Q, Guo Y, Liu K, Qiao B, Wang A, Zhang T. Chem. Rev., 2020, 120: 11986.

[4]

Gao C, Low J, Long R, Kong T, Zhu J, Xiong Y. Chem. Rev., 2020, 120: 12175.

[5]

Hai X, Xi S, Mitchell S, Harrath K, Xu H, Akl D F, Kong D, Li J, Li Z, Sun T, Yang H, Cui Y, Su C, Zhao X, Li J, Perez-Ramirez J, Lu J. Nat. Nanotechnol., 2022, 17: 174.

[6]

Yang H, Shang L, Zhang Q, Shi R, Geoffrey I N W, Gu L, Zhang T. Nat. Comm., 2019, 10: 4585.

[7]

Yan H, Su C, He J, Chen W. J. Mater. Chem. A, 2018, 6: 8793.

[8]

Yan H, Zhao X, Guo N, Lyu Z, Du Y, Xi S, Guo R, Cheng C, Chen Z, Liu W, Yao C, Li J, Pennycook S J, Chen W, Su C, Zhang C, Lu J. Nat. Comm., 2018, 9: 1.

[9]

Li X, Bi W, Zhang L, Tao S, Chu W, Zhang Q, Luo Y, Wu C, Xie Y. Adv. Mater., 201, 28: 2427.

[10]

Li X, Fang Y, Wang J, Fang H, Xi S, Zhao X, Xu D, Xu H, Yu W, Hai X, Chen C, Yao C, Tao H B, Howe A G R, Pennycook S J, Liu B, Lu J, Su C. Nat. Comm., 2021, 12: 2351.

[11]

Ji S, Chen Y, Wang X, Zhang Z, Wang D, Li Y. Chem. Rev., 2020, 120: 11900.

[12]

Hai X, Zhao X, Guo N, Yao C, Chen C, Liu W, Du Y, Yan H, Li J, Chen Z, Li X, Li Z, Xu H, Lyu P, Zhang J, Lin M, Su C, Stephen J P, Zhang C, Xi S, Lu J. ACS Catal., 2020, 10: 5862.

[13]

Xue Z-H, Luan D, Zhang H, Lou X W. Joule, 2022, 6: 92.

[14]

Li X, Zeng Y, Tung C-W, Lu Y-R, Baskaran S, Hung S-F, Wang S, Xu C-Q, Wang J, Chan T-S, Chen H M, Jiang J, Yu Q, Huang Y, Li J, Zhang T, Liu B. ACS Catal., 2021, 11: 7292.

[15]

Liang S, Huang L, Gao Y, Wang Q, Liu B. Adv. Sci., 2021, 8: 2102886.

[16]

Guo W, Wang Z, Wang X, Wu Y. Adv. Mater., 2021, 33: 2004287.

[17]

Zhao Y, Zhou H, Zhu X, Qu Y, Xiong C, Xue Z, Zhang Q, Liu X, Zhou F, Mou X, Wang W, Chen M, Xiong Y, Lin X, Lin Y, Chen W, Wang H-J, Jiang Z, Zheng L, Yao T, Dong J, Wei S, Huang W, Gu L, Luo J, Li Y, Wu Y. Nat. Catal., 2021, 4: 134.

[18]

Yang H B, Hung S-F, Liu S, Yuan K, Miao S, Zhang L, Huang X, Wang H-Y, Cai W, Chen R, Gao J, Yang X, Chen W, Huang Y, Chen H M, Li C M, Zhang T, Liu B. Nat. Energy, 2018, 3: 140.

[19]

Teng Z, Zhang Q, Yang H, Kato K, Yang W, Lu Y-R, Liu S, Wang C, Yamakata A, Su C, Liu B, Ohno T. Nat. Catal., 2021, 4: 374.

[20]

Xiong T, Cen W, Zhang Y, Dong F. ACS Catal., 201, 6: 2462.

[21]

Qiu C, Xu Y, Fan X, Xu D, Tandiana R, Ling X, Jiang Y, Liu C, Yu L, Chen W, Su C. Adv. Sci., 2019, 6: 1801403.

[22]

Jiang W, Zhao Y, Zong X, Nie H, Niu L, An L, Qu D, Wang X, Kang Z, Sun Z. Angew. Chem. Int. Ed., 2021, 60: 6124.

[23]

Hendrik S, Julia K, Gökcen S, Maxwell W T, Sebastian B, Igor M, Viola D, Filip P, Renée S, Jürgen S, Robert E D, Christian O, Bettina V L. Chem. Mater., 2019, 18: 7478.

[24]

Zhuo H-Y, Zhang X, Liang J-X, Yu Q, Xiao H, Li J. Chem. Rev., 2020, 120: 12315.

[25]

Banerjee T, Podjaski F, Kroeger J, Biswal B P, Lotsch B V. Nat. Rev. Mater., 2021, 6: 168.

[26]

Nosaka Y, Nosaka A. Introduction to Photocatalysis: From Basic Science to Applications, 2016, London: Royal Society of Chemistry

[27]

Zhang Z, Yates J T Jr. Chem. Rev., 2012, 112: 5520.

[28]

Quintana M, Edvinsson T, Hagfeldt A, Boschloo G. J. Phys. Chem. C, 200, 111: 1035.

[29]

Williams F, Nozik A J. Nature, 1984, 312: 21.

[30]

Juan B, Peter C, Luca B, Sixto G. J. Phys. Chem. Lett., 2014, 5: 205.

[31]

Wang Q, Domen K. Chem. Rev., 2019, 2: 919.

[32]

Liu T, Pan Z, Junie J M V, Kato K, Wu B, Yamakata A, Katayama K, Chen B, Chu C, Domen K. Nat. Comm., 2022, 13: 1034.

[33]

Nosaka Y, Nosaka A Y. Chem. Rev., 2017, 117: 11302.

[34]

Park H, Kim H-I, Moon G-H, Choi W. Energy Environ. Sci., 201, 9: 411.

[35]

Le Bahers T, Rerat M, Sautet P. J. Phys. Chem. C, 2014, 118: 5997.

[36]

Takanabe K. ACS Catal., 2017, 7: 8006.

[37]

Li R, Zhang F, Wang D, Yang J, Li M, Zhu J, Zhou X, Han H, Li C. Nat. Comm., 2013, 4: 1432.

[38]

Takata T, Jiang J, Sakata Y, Nakabayashi M, Shibata N, Nandal V, Seki K, Hisatomi T, Domen K. Nature, 2020, 581: 411.

[39]

Guiglion P, Butchosa C, Zwijnenburg M A. Macromol. Chem. Phys., 201, 217: 344.

[40]

Clarke T M, Durrant J R. Chem. Rev., 2010, 110: 6736.

[41]

Teng Z, Cai W, Sim W, Zhang Q, Wang C, Su C, Ohno T. Appl. Catal. B: Environ., 2021, 282: 119589.

[42]

Lu T, Chen F. J. Comput. Chem., 2012, 33: 580.

[43]

Puschnig P, Ambrosch-Draxl C. C. R. Phys, 2009, 10: 504.

[44]

Rahman M Z, Mullins C B. Acc. Chem. Res., 2019, 52: 248.

[45]

Merschjann C, Tschierlei S, Tyborski T, Kailasam K, Orthmann S, Hollmann D, Schedel-Niedrig T, Thomas A, Lochbrunner S. Adv. Mater., 2015, 27: 7993.

[46]

Pelzer K M, Darling S B. Mol. Syst. Des. Eng., 201, 1: 10.

[47]

Bredas J-L. Mater. Horiz., 2014, 1: 17.

[48]

Lin L, Ou H, Zhang Y, Wang X. ACS Catal., 201, 6: 3921.

[49]

Kim M-I, Chae B-G, Nishigaki M. Geosci. J., 2008, 12: 83.

[50]

Hughes M P, Rosenthal K D, Ran N A, Seifrid M, Bazan G C, Nguyen T-Q. Adv. Fun. Mater., 2018, 28: 1801542.

[51]

Serway A. R., Jewett W. J., Physics for Scientists & Engineers with Modern Physics, Cengage Learning, Boston, 2020, Chapter 27

[52]

Patra P C, Mohapatra Y N. Appl. Phy. Lett., 2021, 118: 103501.

[53]

Zhou D, Pang L-X, Wang D-W, Reaney I M. J. Mater. Chem. C, 2018, 6: 9290.

[54]

Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, Avrutin V, Cho S J, Morkoç H. J. Appl. Phys., 2005, 98: 041301.

[55]

Zhao D, Wang Y, Dong C-L, Huang Y-C, Chen J, Xue F, Shen S, Guo L. Nat. Energy, 2021, 6: 388.

[56]

Ohno T, Sarukawa K, Matsumura M. New J. Chem., 2002, 26: 1167.

[57]

Petousis I, Mrdjenovich D, Ballouz E, Liu M, Winston D, Chen W, Graf T, Schladt T D, Persson K A, Prinz F B. Sci. Data, 2017, 4: 160134.

[58]

Lin L, Lin Z, Zhang J, Cai X, Lin W, Yu Z, Wang X. Nat. Cat., 2020, 3: 649.

[59]

Wan Y, Wang L, Xu H, Wu X, Yang J. Journal of the American Chemical Society, 2020, 142: 4508.

[60]

Guiglion P, Monti A, Zwijnenburg M A. J. Phys. Chem. C, 2017, 121: 1498.

[61]

Noda Y, Merschjann C, Tarabek J, Amsalem P, Koch N, Bojdys M J. Angew. Chem. Int. Ed., 2019, 58: 9394.

[62]

Tamai Y, Ohkita H, Benten H, Ito S. J. Phys. Chem. Lett., 2015, 6: 3417.

[63]

Teng Z, Yang N, Lv H, Wang S, Hu M, Wang C, Wang D, Wang G. Chem, 2019, 5: 664.

[64]

Botiz I, Schaller R D, Verduzco R, Darling S B. J. Phys. Chem. C, 2011, 115: 9260.

[65]

Kosco J, Gonzalez-Carrero S, Howells C T, Fei T, Dong Y, Sougrat R, Harrison G T, Firdaus Y, Sheelamanthula R, Purushothaman B, Moruzzi F, Xu W, Zhao L, Basu A, De Wolf S, Anthopoulos T D, Durrant J R, McCulloch I. Nat. Energy, 2022, 7: 340.

[66]

Lau V W-H, Klose D, Kasap H, Podjaski F, Pignie M-C, Reisner E, Jeschke G, Lotsch B V. Angew. Chem. Int. Ed., 2017, 56: 510.

[67]

Yang W, Godin R, Kasap H, Moss B, Dong Y, Hillman S A J, Steier L, Reisner E, Durrant J R. J. Am. Chem. Soc., 2019, 141: 11219.

[68]

Zhang P, Tong Y, Liu Y, Vequizo J J M, Sun H, Yang C, Yamakata A, Fan F, Lin W, Wang X, Choi W. Angew. Chem. Int. Ed., 2020, 59: 16209.

[69]

Dong Z, Zhang L, Gong J, Zhao Q. Chem. Eng. J., 2021, 403: 2021.

[70]

Johnson M A, Martine T J. Annu. Rev. Phys. Chem., 2012, 63: 287.

[71]

Laurent A D, Jacquemin D. Int. J. Quantum Chem., 2013, 113: 2019.

[72]

Ghuman K K, Hoch L B, Szymanski P, Loh J Y Y, Kherani N P, El-Sayed M A, Ozin G A, Singh C V. J. Am. Chem. Soc., 201, 138: 1206.

[73]

Norskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T, Jonsson H. J. Phys. Chem. B, 2004, 108: 17886.

[74]

Feng C, Wu Z-P, Huang K-W, Ye J, Zhang H. Adv. Mater., 2022 2200180.

[75]

Esterhuizen J A, Goldsmith B R, Linic S. Nat. Catal., 2022, 5: 175.

[76]

Niu H, Bonati L, Piaggi P M, Parrinello M. Nat. Comm., 2020, 11: 2654.

[77]

Zhao Y, Yang N, Wang C, Song L, Yu R, Wang D. APL Mater., 2021, 9: 071102.

[78]

Qi Q, Xu L, Du J, Yang N, Wang D. Chem. Res. Chinese Universities, 2021, 37(5): 1158.

[79]

Zhao Y, Wan J, Yao H, Zhang L, Lin K, Wang L, Yang N, Liu D, Song L, Zhu J, Gu L, Liu L, Zhao H, Li Y, Wang D. Nat. Chem., 2018, 10: 924.

[80]

Liu B, Xu L, Zhao Y, Du J, Yang N, Wang D. J. Mater. Chem. A, 2021, 9: 19298.

[81]

Zhan S, Zhao Y, Yang N, Wang D. Chem. J. Chinese Universities, 2021, 42(2): 333.

[82]

Zhao Y, Yang N, Yao H, Liu D, Song L, Zhu J, Li S, Gu L, Lin K, Wang D. J. Am. Chem. Soc., 2019, 141: 7240.

[83]

Zhao Y, Yang N, Yu R, Zhang Y, Zhang J, Li Y, Wang D. EnergyChem, 2020, 2: 100041.

[84]

Lin C, Kim T, Schultz J D, Young R M, Wasielewski M R. Nat. Chem., 2022, 14: 786.

[85]

Wahab M A, Joseph J, Atanda L, Sultana U K, Beltramini J N, Ostrikov K, Will G, O’Mullane A P, Abdala A. ACS Appl. Energy Mater., 2020, 3: 1439.

[86]

Chen P, Dong X A, Huang M, Li K, Xiao L, Sheng J, Chen S, Zhou Y, Dong F. ACS Catal., 2022, 12: 4560.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/