Novel Biomass-derived Hollow Carbons as Anode Materials for Lithium-ion Batteries

Ziye Wu , Zifan Li , Shulei Chou , Xiaoyu Liang

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (2) : 283 -289.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (2) : 283 -289. DOI: 10.1007/s40242-022-2214-7
Article

Novel Biomass-derived Hollow Carbons as Anode Materials for Lithium-ion Batteries

Author information +
History +
PDF

Abstract

A novel hollow carbon derived from biomass lotus-root has been prepared by a one-step carbonization method. The carbon anode obtained at 900 °C showed the best electrochemical performance, corresponding to a high specific capacity of 445 mA·h/g at 0.1 C, as well as excellent cycling stability after 500 cycles. Further investigation exhibits that the lithium storage of hollow carbon involves Li+ adsorption in the defect sites and Li+ insertion. The results showed that the intrinsic structure of lotus root can inspire us to prepare biomass carbon with a hollow structure as an excellent anode for lithium-ion batteries.

Keywords

Biomass hollow carbon / Lithium-ion battery / Negative electrode material / Electrochemical performance

Cite this article

Download citation ▾
Ziye Wu, Zifan Li, Shulei Chou, Xiaoyu Liang. Novel Biomass-derived Hollow Carbons as Anode Materials for Lithium-ion Batteries. Chemical Research in Chinese Universities, 2023, 39(2): 283-289 DOI:10.1007/s40242-022-2214-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Goodenough J B. Energy & Environ. Sci., 2014, 7: 14.

[2]

Zhou G M, Li F, Cheng H M. Energy & Environ. Sci., 2014, 7: 1307.

[3]

Werner M, Weinberg K. PAMM, 2018, 18: e201800227.

[4]

Libich J, Vondrak J, Sedlarikova M, Maca J, Cech O. Surface Engineer. Appl. Electrochem., 2017, 53: 597.

[5]

Fauteux D, Koksbang R. J. Appl. Electrochem., 1993, 23: 1.

[6]

Zhu J E, Li W, Xia Y, Sahraei E. J. Electrochem. Soc., 2018, 165: A1160.

[7]

He X M, Ren J G, Wang L. ECS Transactions, 200, 2: 47.

[8]

Al-Shara N K, Sher F, Iqbal S Z, Curnick O, Chen G Z. J. Energy Chem., 2021, 52: 421.

[9]

Yu J L, Tang T B, Cheng F, Huang D, Martin J L, Brewer C E, Grimm R L, Zhou M, Luo H M. Mater. Today Energy, 2021, 19: 100580.

[10]

Liedel C. ChemSusChem, 2020, 13: 2110.

[11]

Liu J, Yuan H, Tao X, Liang X Y, Yang S J, Huang J Q, Yuan T Q, Titirici M, Zhang Q. EcoMat, 2020, 2: e12019.

[12]

Li Q, Liu Y P, Wang Y, Chen Y X, Guo X D, Wu Z G, Zhong B H. Ionics, 2020, 26: 4765.

[13]

Flandrois S, Simon B. Carbon, 1999, 37: 65.

[14]

Zheng P, Liu T, Zhang J Z, Zhang L F, Liu Y, Huang J F, Guo SW. RSC Adv., 2015, 5: 40737.

[15]

Wang L, Schnepp Z, Titirici M M. J. Mater. Chem. A, 2013, 1: 5269.

[16]

Jiang Q, Zhang Z H, Yin S Y, Guo Z P, Wang S Q, Feng C Q. Appl. Surface Sci., 201, 379: 73.

[17]

You X L, Liu L J, Zhang M Y, Walle M D, Li Y J, Liu Y N. Mater. Lett., 2018, 217: 167.

[18]

Dou Y L, Liu X, Yu K F, Wang X F, Liu W P, Liang J C. Diamond and Related Materials, 2019, 98: 107514.

[19]

Yang J, Liu K X, Liu Q Y, Zheng X C. J. Alloys Comp., 2021, 885: 161218.

[20]

Wang Z H, Kang K Y, Wu J X, Hu Q, Harper D P, Du G B, Wang S Q, Xu K M. J. Mater. Res. Techno., 2021, 11: 50.

[21]

Gao F, Zang Y H, Wang Y, Guan C Q, Qu J Y, Wu M B. New Carbon Mater., 2021, 36: 34.

[22]

Lee K T, Lytle J C, Ergang N S, Oh S M, Stein A. Adv. Func. Mater., 2005, 15: 547.

[23]

Yan Y L, Shi M M, Wei Y Q, Zhao C, Carnie M, Yang R, Xu Y H. J. Alloys Comp., 2018, 738: 16.

[24]

Niu J, Liu M Y, Xu F, Zhang Z P, Dou M L, Wang F. Carbon, 2018, 140: 664.

[25]

Liu G L, Liu Z M, Li J L, Zeng M, Li Z Y, He L, Li F W. Carbon, 2018, 137: 68.

[26]

Zhang Y L, Li X, Wang Q F, Miao J, Tian H F, Liu X C, Shen N, Li X Y. J. Mater. Sci.: Mater. Electron., 2021, 32: 23776.

[27]

Rojas M C, Lobos M L N, Para M L, Quijon M E G, Camara O, Barraco D, Moyano E L, Luque G L. Biomass and Bioenergy, 2021, 146: 105971.

[28]

Rentero C H, Marangon V, Marín M O, Serrano V G, Caballero A, Morales J, Hassoun J. J. Colloid Interface Sci., 2020, 573: 396.

[29]

Chen C, Huang Y, Zhu Y D, Zhang Z, Guang Z X, Meng Z Y, Liu P B. ACS Sustainable Chemistry & Engineering, 2020, 8: 1497.

[30]

Dou Y L, Liu X, Wang X F, Yu K F, Liang C. Mater. Sci. Engineering: B, 2021, 265: 115015.

[31]

Wang F Q, Ouyang D H, Zhou Z Y, Page S J. J. Energy Chem., 2021, 57: 247.

[32]

Li Y, Shi H C, Liang C, Yu K F. Ionics, 2021, 27: 1025.

[33]

Zhang W H, Ai J J, Lei Y K, Li Y, Lai C Y, Xie J Y. Solid State Ionics, 2020, 344: 115132.

[34]

Chen W Y, Xu D H, Kuang S J, Wu Z Q, Hu H, Zheng M T, Yu X Y. J. Power Sources, 2021, 489: 229459.

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/