Surface Organometallic Chemistry for Single-site Catalysis and Single-atom Catalysis

Fan Wu , Pengxin Liu

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5) : 1139 -1145.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5) : 1139 -1145. DOI: 10.1007/s40242-022-2211-x
Review

Surface Organometallic Chemistry for Single-site Catalysis and Single-atom Catalysis

Author information +
History +
PDF

Abstract

Although driven by different research interests, single-site catalysts and single-atom catalysts are both believed to be model systems bridging homogeneous and heterogeneous catalysis. The two concepts are similar but different. In this review, we will first explain the difference between single-atom catalysis and single-site catalysis, in terms of their goals, synthetic methods and coordination structures of corresponding catalysts. Then, we will introduce the surface organometallic chemistry method, a method traditionally used for synthesizing single-site catalyst. We will explain why it might benefit the single-atom catalysis community. At last, the choice of support to accommodate the method for synthesizing single-atom catalysts will be discussed.

Keywords

Surface organometallic chemistry / Single-atom catalyst / Single-site catalyst / Atomically dispersed catalyst / Surface coordination structure

Cite this article

Download citation ▾
Fan Wu, Pengxin Liu. Surface Organometallic Chemistry for Single-site Catalysis and Single-atom Catalysis. Chemical Research in Chinese Universities, 2022, 38(5): 1139-1145 DOI:10.1007/s40242-022-2211-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fechete I, Wang Y, Védrine J C. Catal. Today, 2012, 189: 2.

[2]

Wang A, Li J, Zhang T. Nat. Rev. Chem, 2018, 2: 65.

[3]

Ji S, Chen Y, Wang X, Zhang Z, Wang D, Li Y. Chem. Rev., 2020, 120: 11900.

[4]

Copéret C, Chabanas M, Petroff Saint-Arroman R, Basset J M. Angew. Chem. Int. Ed., 2003, 42: 156.

[5]

Wegener S L, Marks T J, Stair P C. Acc. Chem. Res., 2012, 45: 206.

[6]

Liu P, Zhao Y, Qin R, Mo S, Chen G, Gu L, Chevrier D M, Zhang P, Guo Q, Zang D, Wu B, Fu G, Zheng N. Science, 201, 352: 797.

[7]

Fei H, Dong J, Feng Y, Allen C S, Wan C, Volosskiy B, Li M, Zhao Z, Wang Y, Sun H, An P, Chen W, Guo Z, Lee C, Chen D, Shakir I, Liu M, Hu T, Li Y, Kirkland A I, Duan X, Huang Y. Nat. Catal., 2018, 1: 63.

[8]

Cui X, Li W, Ryabchuk P, Junge K, Beller M. Nat. Catal., 2018, 1: 385.

[9]

Sun K, Shan H, Neumann H, Lu G-P, Beller M. Nat. Commun., 2022, 13: 1848.

[10]

Lang R, Li T, Matsumura D, Miao S, Ren Y, Cui Y-T, Tan Y, Qiao B, Li L, Wang A, Wang X, Zhang T. Angew. Chem. Int. Ed., 201, 55: 16054.

[11]

Cui X, Junge K, Dai X, Kreyenschulte C, Pohl M-M, Wohlrab S, Shi F, Brückner A, Beller M. ACS Cent. Sci., 2017, 3: 580.

[12]

Chen Z, Vorobyeva E, Mitchell S, Fako E, Ortuño M A, López N, Collins S M, Midgley P A, Richard S, Vilé G, Pérez-Ramírez J. Nat. Nanotechnol., 2018, 13: 702.

[13]

Samantaray M K, D’Elia V, Pump E, Falivene L, Harb M, Ould Chikh S, Cavallo L, Basset J M. Chem. Rev., 2020, 120: 734.

[14]

Korzyński M D, Copéret C. Trends. Chem., 2021, 3: 850.

[15]

Thomas J M, Raja R, Lewis D W. Angew. Chem. Int. Ed., 2005, 44: 6456.

[16]

Qin R, Liu K, Wu Q, Zheng N. Chem. Rev., 2020, 120: 11810.

[17]

Peng M, Dong C, Gao R, Xiao D, Liu H, Ma D. ACS Cent. Sci., 2021, 7: 262.

[18]

Dong C, Gao Z, Li Y, Peng M, Wang M, Xu Y, Li C, Xu M, Deng Y, Qin X, Huang F, Wei X, Wang Y-G, Liu H, Zhou W, Ma D. Nat. Catal., 2022, 5: 485.

[19]

Chakraborty I, Pradeep T. Chem. Rev., 2017, 117: 8208.

[20]

Yang D, Xu P, Guan E, Browning N D, Gates B C. J. Catal., 201, 338: 12.

[21]

Guan E, Gates B C. ACS Catal., 2018, 8: 482.

[22]

Guan E, Ciston J, Bare S R, Runnebaum R C, Katz A, Kulkarni A, Kronawitter C X, Gates B C. ACS Catal., 2020, 10: 9065.

[23]

Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J, Zhang T. Nat. Chem., 2011, 3: 634.

[24]

Schüth F. Angew. Chem. Int. Ed., 2014, 53: 8599.

[25]

Thomas J M, Saghi Z, Gai P L. Top. Catal., 2011, 54: 588.

[26]

Yang X-F, Wang A, Qiao B, Li J, Liu J, Zhang T. Acc. Chem. Res., 2013, 46: 1740.

[27]

Marks T J. Acc. Chem. Res., 1992, 25: 57.

[28]

Ballard D G H. Adv. Catal., 1973, 23: 263.

[29]

Ballard D G H. J. Polym. Sci.: Polym. Chem. Ed., 1975, 13: 2191.

[30]

Malta G, Kondrat S A, Freakley S J, Davies C J, Lu L, Dawson S, Thetford A, Gibson E K, Morgan D J, Jones W, Wells P P, Johnston P, Catlow C R, Kiely C J, Hutchings G J. Science, 2017, 355: 1399.

[31]

Lin L, Zhou W, Gao R, Yao S, Zhang X, Xu W, Zheng S, Jiang Z, Yu Q, Li Y-W, Shi C, Wen X-D, Ma D. Nature, 2017, 544: 80.

[32]

Yan H, Cheng H, Yi H, Lin Y, Yao T, Wang C, Li J, Wei S, Lu J. J. Am. Chem. Soc., 2015, 137: 10484.

[33]

Klet R C, Wang T C, Fernandez L E, Truhlar D G, Hupp J T, Farha O K. Chem. Mater., 201, 28: 1213.

[34]

Samantaray M K, Pump E, Bendjeriou-Sedjerari A, D’Elia V, Pelletier J D A, Guidotti M, Psaro R, Basset J-M. Chem. Soc. Rev., 2018, 47: 8403.

[35]

Copéret C, Comas-Vives A, Conley M P, Estes D P, Fedorov A, Mougel V, Nagae H, Núñez-Zarur F, Zhizhko P A. Chem. Rev., 201, 116: 323.

[36]

Kaphan D M, Klet R C, Perras F A, Pruski M, Yang C, Kropf A J, Delferro M. ACS Catal., 2018, 8: 5363.

[37]

Corma A, Garcia H. Top. Catal., 2008, 48: 8.

[38]

Alvaro M, Baleizao C, Das D, Carbonell E, Garcia H. J. Catal., 2004, 228: 254.

[39]

Baleizão C, Gigante B, Garcia H, Corma A. J. Catal., 2004, 221: 77.

[40]

Christopher P. ACS Energy Letters, 2019, 4: 2249.

[41]

Liu P, Zheng N. Natl. Sci. Rev., 2018, 5: 636.

[42]

Wang Z L, Choi J, Xu M, Hao X, Zhang H, Jiang Z, Zuo M, Kim J, Zhou W, Meng X, Yu Q, Sun Z, Wei S, Ye J, Wallace G G, Officer D L, Yamauchi Y. ChemSusChem, 2020, 13: 929.

[43]

Liu P, Qin R, Fu G, Zheng N. J. Am. Chem. Soc., 2017, 139: 2122.

[44]

Rascón F, Wischert R, Copéret C. Chem. Sci., 2011, 2: 1449.

[45]

Hoffmann P, Knözinger E. Surf. Sci., 1987, 188: 181.

[46]

Fujdala K L, Tilley T D. J. Catal., 2003, 216: 265.

[47]

Nozaki C, Lugmair C G, Bell A T, Tilley T D. J. Am. Chem. Soc., 2002, 124: 13194.

[48]

Liu P, Zhao Y, Qin R, Gu L, Zhang P, Fu G, Zheng N. Sci. Bull., 2018, 63: 675.

[49]

Zhang Z, Wang Z L, An K, Wang J, Zhang S, Song P, Bando Y, Yamauchi Y, Liu Y. Small, 2021, 17: e2008052.

[50]

Conley M P, Delley M F, Núñez-Zarur F, Comas-Vives A, Copéret C. Inorg. Chem., 2015, 54: 5065.

[51]

Estes D P, Siddiqi G, Allouche F, Kovtunov K V, Safonova O V, Trigub A L, Koptyug I V, Copéret C. J. Am. Chem. Soc., 201, 138: 14987.

[52]

Lu J, Serna P, Gates B C. ACS Catal., 2011, 1: 1549.

[53]

Lebedev D, Pineda-Galvan Y, Tokimaru Y, Fedorov A, Kaeffer N, Copéret C, Pushkar Y. J. Am. Chem. Soc., 2018, 140: 451.

[54]

Rimoldi M, Mezzetti A. Catal. Sci. Technol., 2014, 4: 2724.

[55]

Rimoldi M, Fodor D, van Bokhoven J A, Mezzetti A. Chem. Commun., 2013, 49: 11314.

[56]

Liu P, Huang X, Mance D, Copéret C. Nat. Catal., 2021, 4: 968.

[57]

Liu P, Abdala P M, Goubert G, Willinger M-G, Copéret C. Angew. Chem. Int. Ed., 2021, 60: 3254.

AI Summary AI Mindmap
PDF

201

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/