Bimetallic Au-Pd NPs Embedded in MOF Ultrathin Nanosheets with Tuned Surface Electronic Properties for High-performance Benzyl Alcohol Oxidation

Taolian Guo , Shutong Bao , Jie Guo , Wu Chen , Lili Wen

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6) : 1344 -1348.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6) : 1344 -1348. DOI: 10.1007/s40242-022-2210-y
Article

Bimetallic Au-Pd NPs Embedded in MOF Ultrathin Nanosheets with Tuned Surface Electronic Properties for High-performance Benzyl Alcohol Oxidation

Author information +
History +
PDF

Abstract

Bimetallic Au-Pd nanoparticles(NPs) with synergistic effect between Au and Pd atom have shown excellent catalytic activity toward benzyl alcohol oxidation. The catalytic activities of metal NPs supported within metal-organic frameworks (MOFs) are affected by the electronic interactions between metal NPs and MOFs. Taking the advantages of ultrathin nanosheets, we confine the highly dispersed Au-Pd NPs within ultrathin nanosheets of MOF-Ni(NMOF-Ni) to fabricate Au xPd y@NMOF-Ni as catalysts. Under base-free and atmospheric pressure conditions, the as-prepared Au xPd y@NMOF-Ni catalysts exhibit superior activity and selectivity for benzyl alcohol oxidation. This work highlights the synergistic effects among different components in composite catalysts effectively improving the activity and offers a new way for designing efficient catalysts toward benzyl alcohol oxidation.

Keywords

Bimetallic Au-Pd nanoparticle / Ultrathin MOF nanosheet / Nanocomposite / Synergistic effect / Benzyl alcohol

Cite this article

Download citation ▾
Taolian Guo, Shutong Bao, Jie Guo, Wu Chen, Lili Wen. Bimetallic Au-Pd NPs Embedded in MOF Ultrathin Nanosheets with Tuned Surface Electronic Properties for High-performance Benzyl Alcohol Oxidation. Chemical Research in Chinese Universities, 2022, 38(6): 1344-1348 DOI:10.1007/s40242-022-2210-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guo Z, Liu B, Zhang Q, Deng W, Wang Y, Yang Y. Chem. Soc. Rev., 2014, 43: 3480.

[2]

Ramirez-Barria C S, Isaacs M, Parlett C, Wilson K, Guerrero-Ruiz A, Rodríguez-Ramos I. Catal. Today, 2020, 357: 8.

[3]

Dai X, Rasamani K D, Wu S, Sun Y. Today Energy, 2018, 10: 15.

[4]

Bai L, Zhang S, Chen Q, Gao C. ACS Appl. Mater. Inter., 2017, 9: 9710.

[5]

Oliveira R L, Kiyohara P K, Rossi L M. Green Chem., 2010, 12: 144.

[6]

Naya S, Teranishi M, Aoki R, Tada H. J. Phys. Chem. C., 201, 120: 12440.

[7]

Rostamnia S, Kholdi S. Adv. Powder Technol., 2018, 29: 1167.

[8]

Liu Y, Liu Z, Huang D, Cheng M, Zeng G, Lai C, Zhang C, Zhou C, Wang W, Jiang D, Wang H, Shao B. Coordin. Chem. Rev., 2019, 388: 63.

[9]

Crombie C M, Lewis R J, Taylor R L, Morgan D J, Davies T E, Folli A, Murphy D M, Edwards J K, Qi J, Jiang H, Kiely C J, Liu X, Skjøth-Rasmussen M S, Hutchings G J. ACS Catal., 2021, 11: 2701.

[10]

Luan Y, Qi Y, Gao H, Zheng N, Wang G. J. Mater. Chem. A, 2014, 2: 20588.

[11]

Olmos C M, Chinchilla L E, Villa A, Delgado J J, Pan H, Hungría A B, Blanco G, Calvino J J, Prati L, Chen X. Appl. Catal. A: Gen., 201, 525: 145.

[12]

Guadix-Montero S, Alshammari H, Dalebout R, Nowicka E, Morgan D J, Shaw G, He Q, Sankar M. Appl. Catal. A: Gen., 2017, 546: 58.

[13]

Zhu X, Guo Q, Sun Y, Chen S, Wang J Q, Wu M, Fu W, Tang Y, Duan X, Chen D, Wan Y. Nat. Commun., 2019, 10: 1428.

[14]

Wang H, Wang C, Yan H, Yi H, Lu J. J. Catal., 2015, 324: 59.

[15]

Zhang Z, Wang Y, Li X, Dai W L. Chinese J. Catal., 2014, 35: 1846.

[16]

Choi K M, Na K, Somorjai G A, Yaghi O M. J. Am. Chem. Soc., 2015, 137: 7810.

[17]

Zhang W, Shi W, Ji W, Wu H, Gu Z, Wang P, Li X, Qin P, Zhang J, Fan Y, Wu T, Fu Y, Zhang W, Huo F. ACS Catal., 2020, 10: 5805.

[18]

Li L, Chen X, Wu Y, Wang D, Peng Q, Zhou G, Li Y. Angew. Chem. Int. Ed., 2013, 52: 11049.

[19]

Wang F, Ueda W, Xu J. Angew. Chem. Int. Ed., 2012, 51: 3883.

[20]

Vayssilov G N, Lykhach Y, Migani A, Staudt T, Petrova G P, Tsud N, Skála T, Bruix A, Illas F, Prince K C, Matolı’n V, Neyman K M, Libuda J. Nat. Mater., 2011, 10: 310.

[21]

Li X, Goh T W, Li L, Xiao C, Guo Z, Zeng X C, Huang W. ACS Catal., 201, 6: 3461.

[22]

Yoshimaru S, Sadakiyo M, Staykov A, Kato K, Yamauchi M. Chem. Commun., 2017, 53: 6720.

[23]

Tong Y, Xue G, Wang H, Liu M, Wang J, Hao C, Zhang X, Wang D, Shi X, Liu W, Li G, Tang Z. Nanoscale, 2018, 10: 16425.

[24]

Choi K M, Na K, Somorjai G A, Yaghi O M. J. Am. Chem. Soc., 2015, 137: 7810.

[25]

Zhao M, Yuan K, Wang Y, Li G, Guo J, Gu L, Hu W, Zhao H, Tang Z. Nature, 201, 539: 76.

[26]

Zhang W, Ji W, Li L, Qin P, Khalil I E, Gu Z, Wang P, Li H, Fan Y, Ren Z, Shen Y, Zhang W, Fu Y, Huo F. ACS Appl. Mater. Inter., 2020, 12: 52660.

[27]

Xu M, Li D, Sun K, Jiao L, Xie C, Ding C, Jiang H L. Angew. Chem. Int. Ed., 2021, 60: 16372.

[28]

Chen D, Yang W, Jiao L, Li L, Yu S H, Jiang H L. Adv. Mater., 2020, 32: 2000041.

[29]

Yuan S, Feng L, Wang K, Pang J, Bosch M, Lollar C, Sun Y, Qin J, Yang X, Zhang P, Wang Q, Zou L, Zhang Y, Zhang L, Fang Y, Li J, Zhou H. Adv. Mater., 2018, 30: 1704303.

[30]

Danowski W, van Leeuwen T, Abdolahzadeh S, Roke D, Browne W R, Wezenberg S J, Feringa B L. Nat. Nanotechnol., 2019, 14: 488.

[31]

Van Vleet M J, Weng T, Li X, Schmidt J R. Chem. Rev., 2018, 118: 3681.

[32]

Howarth A J, Liu Y, Li P, Li Z, Wang T C, Hupp J T, Farha O K. Nat. Rev. Mater., 201, 1: 15018.

[33]

Zhao X, Wang Y, Li D, Bu X, Feng P. Adv. Mater., 2018, 30: 1705189.

[34]

Feng L, Wang K, Powell J, Zhou H. Matter, 2019, 1: 801.

[35]

Zhang W, Lu G, Cui C, Liu Y, Li S, Yan W, Xing C, Chi Y R, Yang Y, Huo F. Adv. Mater., 2014, 26: 4056.

[36]

Zhang W, Zheng B, Shi W, Chen X, Xu Z, Li S, Chi Y R, Yang Y, Lu J, Huang W, Huo F. Adv. Mater., 2018, 30: 1800643.

[37]

Peng Y, Li Y, Ban Y, Jin H, Jiao W, Liu X, Yang W. Science, 2014, 346: 1356.

[38]

Zhao M, Huang Y, Peng Y, Huang Z, Ma Q, Zhang H. Chem. Soc. Rev., 2018, 47: 6267.

[39]

Li Y, Fu Z, Xu G. Coordin. Chem. Rev., 2019, 388: 79.

[40]

Zhuang L, Ge L, Liu H, Jiang Z, Jia Y, Li Z, Yang D, Hocking R K, Li M, Zhang L, Wang X, Yao X, Zhu Z. Angew. Chem. Int. Ed., 2019, 58: 13565.

[41]

Liu M, Xie K, Nothling M D, Gurr P A, Tan S S L, Fu Q, Webley P A, Qiao G G. ACS Nano, 2018, 12: 11591.

[42]

Huang C, Guo Z, Zheng X, Chen X, Xue Z, Zhang S, Li X, Guan B, Li X, Hu G, Wang T. J. Am. Chem. Soc., 2020, 142: 9408.

[43]

Liu Y, Liu L, Chen X, Liu Y, Han Y, Cui Y. J. Am. Chem. Soc., 2021, 143: 3509.

[44]

Yan R, Zhao Y, Yang H, Kang X, Wang C, Wen L, Lu Z. Adv. Funct. Mater., 2018, 28: 1802021.

[45]

Guo T, Mo K, Zhang N, Xiao L, Liu W, Wen L. Dalton Trans., 2021, 50: 1774.

[46]

Guo T, Huang Y, Zhang N, Chen T, Wang C, Xing X, Lu Z, Wen L. Inorg. Chem., 2022, 61: 2538.

[47]

Chen B, Li F, Huang Z, Yuan G. Appl. Catal. A: Gen., 2015, 500: 23.

[48]

Khorsand S, Raeissi K, Ashrafizadeh F, Arenas M A. Chem. Eng. J., 2015, 273: 638.

[49]

Zhong Y C, Mao Y L, Shi S L, Wan M M, Ma C, Wang S H, Chen C, Zhao D, Zhang N. ACS Appl. Mater. Interfaces, 2019, 11: 32251.

[50]

Dimitratos N, Villa A, Wang D, Porta F, Su D, Prati L. J. Catal., 200, 244: 113.

[51]

Chen Y, Wang H, Liu C, Zeng Z, Zhang H, Zhou C, Jia X, Yang Y. J. Catal., 2012, 289: 105.

[52]

Xu J, Shang J, Chen Y, Wang Y, Li Y. Appl. Catal. A: Gen., 2017, 542: 380.

[53]

Wei Q, Liu T, Wang Y, Dai L. RSC Adv., 2019, 9: 962.

[54]

Kong L, Wang C, Gong F, Zhu W, Zhong Y, Ye X, Li F. Catal. Lett., 201, 146: 1321.

[55]

Liu H, Liu Y, Li Y, Tang Z, Jiang H. J. Phys. Chem. C, 2010, 114: 13362.

[56]

Liu H, Li Y, Jiang H, Vargas C, Luque R. Chem. Commun., 2012, 48: 8431.

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/