Nucleotide Recognition by a Guanidinocalixarene Receptor in Aqueous Solution

Wenchao Geng , Zhe Zheng , Huifeng Jiang , Dongsheng Guo

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (1) : 144 -150.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (1) : 144 -150. DOI: 10.1007/s40242-022-2204-9
Article

Nucleotide Recognition by a Guanidinocalixarene Receptor in Aqueous Solution

Author information +
History +
PDF

Abstract

Nucleotides participate in various physiological processes through their supramolecular interactions with biomolecules. Therefore, the molecular recognition of nucleotides became an important topic in supramolecular chemistry and exhibited many biomedical applications. Guanidinocalixarenes showed very strong binding affinities towards nucleotides, even reaching the nanomolar level. In this work, we systematically determined the binding constants between a typical guanidinocalixarene(guanidinium-modified calix[5]arene, GC5A) and various nucleotides and revealed the driving forces behind the molecular recognition using theoretical calculations. The electrostatic interactions and hydrogen bonding provided by the phosphate groups of the nucleotides dominated the binding between the nucleotides and GC5A. The lower rim alkyl chains and the skeleton of GC5A provide preorganized cavity and upper guanidinium groups. The difference in the type of nucleobase is also attributed to the different binding affinities. This work provides insight into the molecular recognition of nucleotides and facilitates the development of new supramolecular hosts for nucleotides and related biological applications.

Keywords

Calixarene / Nucleotide / Molecular recognition / Indicator displacement assay / Theoretical calculation

Cite this article

Download citation ▾
Wenchao Geng, Zhe Zheng, Huifeng Jiang, Dongsheng Guo. Nucleotide Recognition by a Guanidinocalixarene Receptor in Aqueous Solution. Chemical Research in Chinese Universities, 2023, 39(1): 144-150 DOI:10.1007/s40242-022-2204-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Vander Heiden M G, Cantley L C, Thompson C B. Science, 2009, 324(5930): 1029.

[2]

Kirschning A. Angew. Chem. Int. Ed., 2021, 60(12): 6242.

[3]

Lou J, Heater A, Zheng G. Small Struct., 2021, 2(8): 2100026.

[4]

Trabanelli S, Ocadlikova D, Gulinelli S, Curti A, Salvestrini V, Vieira R P, Idzko M, Di Virgilio F, Ferrari D, Lemoli R M. J. Immunol., 2012, 189(3): 1303.

[5]

Mancinelli R, Fano-Illic G, Pietrangelo T, Fulle S. Int. J. Mol. Sci., 2020, 21(5): 1591.

[6]

Gupta A K, Dhir A, Pradeep C P. Eur. J. Org. Chem., 2015, 2015(1): 122.

[7]

Chung S Y, Nam S W, Lim J, Park S, Yoon J. Chem. Commun., 2009, 20(20): 2866.

[8]

Cattaneo M. Blood, 2011, 117(7): 2102.

[9]

Beavo J A, Brunton L L. Nat. Rev. Mol. Cell Biol., 2002, 3(9): 710.

[10]

Pu F, Ren J, Qu X. Chem. Soc. Rev., 2018, 47(4): 1285.

[11]

Hu X, Guo D. Chem. Res. Chinese Universities, 2021, 37(3): 619.

[12]

Peters G M, Davis J T. Chem. Soc. Rev., 201, 45(11): 3188.

[13]

Geng W-C, Liu Y-C, Zheng Z, Ding D, Guo D-S. Mater. Chem. Front., 2017, 1(12): 2651.

[14]

Ariga K. Small Struct., 2021, 2(6): 2100006.

[15]

Min L, Li T, Tan Q, Tan X, Pan W, He L, Zhang J, Ou E, Xu W. Dalton Trans., 201, 45(18): 7912.

[16]

Agafontsev A M, Ravi A, Shumilova T A, Oshchepkov A S, Kataev E A. Chem. Eur. J., 2019, 25(11): 2684.

[17]

Eliseev A V, Schneider H-J. J. Am. Chem. Soc., 1994, 116(14): 6081.

[18]

Sessler J L, Kral V, Shishkanova T V, Gale P A. Proc. Natl. Acad. Sci. USA, 2002, 99(8): 4848.

[19]

Ojida A, Takashima I, Kohira T, Nonaka H, Hamachi I. J. Am. Chem. Soc., 2008, 130(36): 12095.

[20]

Yu G, Zhou J, Shen J, Tang G, Huang F. Chem. Sci., 201, 7(7): 4073.

[21]

Fujita K, Fujiwara S, Yamada T, Tsuchido Y, Hashimoto T, Hayashita T. J. Org. Chem., 2017, 82(2): 976.

[22]

Zhou Y, Xu Z, Yoon J. Chem. Soc. Rev., 2011, 40(5): 2222.

[23]

Gao J, Li J, Geng W-C, Chen F-Y, Duan X, Zheng Z, Ding D, Guo D-S. J. Am. Chem. Soc., 2018, 140(14): 4945.

[24]

Geng W-C, Ye Z, Zheng Z, Gao J, Li J-J, Shah M R, Xiao L, Guo D-S. Angew. Chem. Int. Ed., 2021, 60(36): 19614.

[25]

Geng W-C, Sun H, Guo D-S. J. Incl. Phenom. Macrocycl. Chem., 2018, 92(1): 1.

[26]

Geng W-C, Zheng Z, Guo D-S. VIEW, 2020, 2(2): 20200059.

[27]

Luo T, Huang J F, Liu J M. Chem. Res. Chinese Universities, 2020, 36(6): 1091.

[28]

Zhou Y, Li H, Yang Y-W. Chin. Chem. Lett., 2015, 26(7): 825.

[29]

Zheng Z, Yu H, Geng W-C, Hu X-Y, Wang Y-Y, Li Z, Wang Y, Guo D-S. Nat. Commun., 2019, 10(1): 5762.

[30]

Geng W-C, Zhang D, Gong C, Li Z, Barraza K M, Beauchamp J L, Guo D-S, Zhang X. Angew. Chem. Int. Ed., 2020, 59(31): 12684.

[31]

Pan Y-C, Wang H, Xu X, Tian H-W, Zhao H, Hu X-Y, Zhao Y, Liu Y, Ding G, Meng Q, Ravoo Bart J, Zhang T, Guo D-S. CCS Chem., 2020, 3(9): 2485.

[32]

Wu J.-J., Chen F.-Y., Han B.-B., Zhang H.-Q., Zhao L., Zhang Z.-R., Li J.-J., Zhang B.-D., Zhang Y.-N., Yue Y.-X., Hu H.-G., Li W.-H., Zhang B., Chen Y.-X., Guo D.-S., Li Y.-M., CCS Chem., 2022, https://doi.org/10.31635/ccschem.022.202201859

[33]

Ocherednyuk E A, Garipova R I, Bogdanov I M, Gafiatullin B K, Sultanova E D, Mironova D A, Daminova A G, Evtugyn V G, Burilov V A, Solovieva S E, Antipin I S. Colloids Surf. A: Physicochem. Eng. Asp., 2022, 648: 129236.

[34]

Liu F, Lu G-Y, He W-J, Liu M-H, Zhu L-G. Thin Solid Films, 2002, 414(1): 72.

[35]

Liu F, Lu G-Y, He W-J, Liu M-H, Zhu L-G, Wu H-M. New J. Chem., 2002, 26(5): 601.

[36]

Zadmard R, Taghvaei-Ganjali S, Gorji B, Schrader T. Chem.-Asian J., 2009, 4(9): 1458.

[37]

Peters M S, Li M, Schrader T. Nat. Prod. Commun., 2012, 7(3): 409.

[38]

Burilov V A, Fatikhova G A, Dokuchaeva M N, Nugmanov R I, Mironova D A, Dorovatovskii P V, Khrustalev V N, Solovieva S E, Antipin I S. Beilstein J. Org. Chem., 2018, 14: 1980.

[39]

Yu H, Geng W-C, Zheng Z, Gao J, Guo D-S, Wang Y. Theranostics, 2019, 9(16): 4624.

[40]

Zheng Z, Geng W-C, Li H-B, Guo D-S. Supramol. Chem., 2021, 33(4): 80.

[41]

Zhang Z, Yue Y-X, Xu L, Wang Y, Geng W-C, Li J-J, Kong X-L, Zhao X, Zheng Y, Zhao Y, Shi L, Guo D-S, Liu Y. Adv. Mater., 2021, 33(12): 2007719.

[42]

Yu H, Chai X, Geng W-C, Zhang L, Ding F, Guo D-S, Wang Y. Biosens. Bioelectron., 2021, 192: 113488.

[43]

Zheng Z, Geng W-C, Gao J, Wang Y-Y, Sun H, Guo D-S. Chem. Sci., 2018, 9(8): 2087.

[44]

Hu X-Y, Gao J, Chen F-Y, Guo D-S. J. Control. Release, 2020, 324: 124.

[45]

Gao J, Yu H, Chen F-Y, Hu X-Y, Wang Y, Guo D-S. Chem. Commun., 2019, 55(95): 14387.

[46]

Wu Y, Wen J, Li H J, Sun S G, Xu Y Q. Chin. Chem. Lett., 2017, 28(10): 1916.

[47]

Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X, Caricato M, Marenich A V, Bloino J, Janesko B G, Gomperts R, Mennucci B, Hratchian H P, Ortiz J V, Izmaylov A F, Sonnenberg J L, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V G, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery J A Jr., Peralta J E, Ogliaro F, Bearpark M J, Heyd J J, Brothers E N, Kudin K N, Staroverov V N, Keith T A, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant J C, Iyengar S S, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma K, Farkas O, Foresman J B, Fox D J. Gaussian 16 R. A., 2016, Wallingford CT: Gaussian, Inc.

[48]

Marenich A V, Cramer C J, Truhlar D G. J. Phys. Chem. B, 2009, 113(18): 6378.

[49]

Stephens P J, Devlin F J, Chabalowski C F, Frisch M J. J. Phys. Chem., 1994, 98(45): 11623.

[50]

Grimme S, Antony J, Ehrlich S, Krieg H. J. Chem. Phys., 2010, 132(15): 154104.

[51]

Lu T, Chen Q. J. Comput. Chem., 2022, 43(8): 539.

[52]

Humphrey W, Dalke A, Schulten K. J. Mol. Graph., 199, 14(1): 33.

[53]

You L, Zha D, Anslyn E V. Chem. Rev., 2015, 115(15): 7840.

[54]

Gao J, Li J, Geng W C, Chen F-Y, Duan X, Zheng Z, Ding D, Guo D-S. J. Am. Chem. Soc., 2018, 140(14): 4945.

[55]

Rassolov V A, Pople J A, Ratner M A, Windus T L. J. Chem. Phys., 1998, 109(4): 1223.

[56]

Marenich A V, Cramer C J, Truhlar D G. J. Phys. Chem. B, 2009, 113(18): 6378.

[57]

Murray J S, Politzer P. WIREs Comput. Mol. Sci., 2011, 1(2): 153.

[58]

Lu T, Chen F. J. Comput. Chem., 2012, 33(5): 580.

[59]

Zhang J, Lu T. Phys. Chem. Chem. Phys., 2021, 23(36): 20323.

[60]

Besler B H, Merz K M, Kollman P A. J. Comput. Chem., 1990, 11(4): 431.

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/