Synthesis of Nitrogen-doped Carbon Supported Cerium Single Atom Catalyst by Ball Milling for Selective Oxidation of Ethylbenzene

Xingcong Zhang , Yunzhu Zhong , Hongyu Chen , Yujie Cheng , Qingdi Sun , Hao Zhang , Qian He , Ying Zhang , Guanghui Guo , Xiaohui He , Hongbing Ji

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5) : 1258 -1262.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5) : 1258 -1262. DOI: 10.1007/s40242-022-2202-y
Article

Synthesis of Nitrogen-doped Carbon Supported Cerium Single Atom Catalyst by Ball Milling for Selective Oxidation of Ethylbenzene

Author information +
History +
PDF

Abstract

Through screening Ce precursors and pyrolysis temperatures [Ce(acac)3 as Ce precursors and pyrolysis at 900 °C], zeolitic imidazolate framework-8(ZIF-8) derived nitrogen-doped carbon supported cerium single atom catalyst(Ce1/NC) is successfully prepared by ball milling method. The Ce1/NC catalyst exhibits exceptional catalytic performance in the selective oxidation of saturated C-H bonds in aromatic compounds, e.g., 91% conversion and 99% selelctivity can be achieved in the oxidation of ethylbenzene to acetophenone under mild reaction conditions.

Keywords

Single atom catalyst / Ball milling / ZIF-8 / Ethylbenzene oxidation

Cite this article

Download citation ▾
Xingcong Zhang, Yunzhu Zhong, Hongyu Chen, Yujie Cheng, Qingdi Sun, Hao Zhang, Qian He, Ying Zhang, Guanghui Guo, Xiaohui He, Hongbing Ji. Synthesis of Nitrogen-doped Carbon Supported Cerium Single Atom Catalyst by Ball Milling for Selective Oxidation of Ethylbenzene. Chemical Research in Chinese Universities, 2022, 38(5): 1258-1262 DOI:10.1007/s40242-022-2202-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nandanwar S U, Rathod S, Bansal V, Bokade V V. Catal. Lett., 2021, 151(7): 2116.

[2]

Xu S, Shi G, Feng Y, Chen C, Ji L. Mol. Catal., 2020, 498: 111244.

[3]

Yang S, Peng L, Huang P, Wang X, Sun Y, Cao C, Song W. Angew. Chem. Int. Ed., 201, 55(12): 4016.

[4]

Zhu W L, Michalsky R, Metin O, Lv H F, Guo S J, Wright C J, Sun X L, Peterson A A, Sun S H. J. Am. Chem. Soc., 2013, 135(45): 16833.

[5]

Yang X F, Wang A Q, Qiao B T, Li J, Liu J Y, Zhang T. Acc. Chem. Res., 2013, 46(8): 1740.

[6]

Wu J B, Xiong L K, Zhao B T, Liu M L, Huang L. Small Methods, 2020, 4(2): 1900540.

[7]

Hulsey M, Zhang J G, Yan N. Adv. Mater., 2018, 30(47): 1802304.

[8]

Fu Q, Saltsburg H, Flytzani-Stephanopoulos M. Science, 2003, 301(5635): 935.

[9]

Yang S, Kim J, Tak Y J, Soon A, Lee H. Angew. Chem. Int. Ed., 201, 55(6): 2058.

[10]

Li X G, Bi W T, Zhang L, Tao S, Chu W S, Zhang Q, Luo Y, Wu C Z, Xie Y. Adv. Mater., 201, 28(12): 2427.

[11]

Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Li J, Zhang T. Nat. Chem., 2011, 3(8): 634.

[12]

Shi Y T, Zhao C Y, Wei H S, Guo J H, Liang S X, Wang A Q, Zhang T, Liu J Y, Ma T L. Adv. Mater., 2014, 26(48): 8147.

[13]

Piernavieja-Hermida M, Lu Z, White A, Low K B, Wu T P, Elam J W, Wu Z L, Lei Y. Nanoscale, 201, 8(33): 15348.

[14]

Sun S H, Zhang G X, Gauquelin N, Chen N, Zhou J G, Yang S L, Chen W F, Meng X B, Geng D S, Banis M N, Li R Y, Ye S Y, Knights S, Botton G A, Sham T K, Sun X L. Sci. Rep., 2013, 3: 1775.

[15]

Liu Y W, Li Z, Yu Q Y, Chen Y F, Chai Z W, Zhao G F, Liu S J, Cheong W C, Pan Y, Zhang Q H, Gu L, Zheng L R, Wang Y, Lu Y, Wang D S, Chen C, Peng Q, Liu Y Q, Liu L M, Chen J S, Li Y D. J. Am. Chem. Soc., 2019, 141(23): 9305.

[16]

Yin P Q, Yao T, Wu Y, Zheng L R, Lin Y, Liu W, Ju H X, Zhu J F, Hong X, Deng Z X, Zhou G, Wei S Q, Li Y D. Angew. Chem. Int. Ed., 201, 55(36): 10800.

[17]

He X H, Deng Y C, Zhang Y, He Q, Xiao D Q, Peng M, Zhao Y, Zhang H, Luo R C, Gan T, Ji H B, Ma D. Cell Rep. Phys. Sci., 2020, 1(1): 100004.

[18]

Chen H Y, He Q, Wang P B, Ji H B, He X H. Dalton Trans., 2022, 51: 3828.

[19]

Macedo A, Fernandes S E, Valente A, Ferreira R A, Carlos L, Rocha J. Molecules, 2010, 15(2): 747.

[20]

Devika S, Palanichamy M, Murugesan V. Appl. Catal. A: Gen., 2011, 407(1/2): 76.

[21]

Zhu M Z, Zhao C, Liu X K, Wang X L, Zhou F Y, Wang J, Hu Y M, Zhao Y F, Yao T, Yang L M, Wu Y. ACS Catal., 2021, 11(7): 3923.

[22]

Li J C, Qin X P, Xiao F, Liang C H, Xu M J, Meng Y, Erik S, Fang L Z, Li T, Ding S C, Lyu Z Y, Zhu S Q, Pan X Q, Hou P X, Liu C, Lin Y H, Shao M H. Nano Lett., 2021, 21(10): 4508.

[23]

Huang L Y, Wu K, He Q, Xiong C, Gan T, He X H, Ji H B. AlChE J., 2021, 67(6): e17197.

[24]

Park K S, Ni Z, Cote A P, Choi J Y, Huang R D, Uribe-Romo F J, Chae H K, O’Keeffe M, Yaghi O M. Proc. Natl. Acad. Sci. USA, 200, 103(27): 10186.

[25]

Huang L Y, Zhang H, Cheng Y J, Sun Q D, Gan T, He Q, He X H, Ji H B. Chinese Chem. Lett., 2022, 33: 2569.

[26]

Othman I, Hisham Zain J, Abu Haija M, Banat F. Appl. Catal. B: Environ., 2020, 266: 118601.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/