Anchoring Single Nickel Atoms on Carbon-vacant Carbon Nitride Nanosheets for Efficient Photocatalytic Hydrogen Evolution

Zhi Lin , Zhengqi Zhang , Yiqing Wang , Zhiming Peng , Xinxin Wang , Ruizhe Wang , Yu-Cheng Huang , Fanqi Meng , Mingtao Li , Chung-Li Dong , Qinghua Zhang , Lin Gu , Shaohua Shen

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5) : 1243 -1250.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5) : 1243 -1250. DOI: 10.1007/s40242-022-2194-7
Article

Anchoring Single Nickel Atoms on Carbon-vacant Carbon Nitride Nanosheets for Efficient Photocatalytic Hydrogen Evolution

Author information +
History +
PDF

Abstract

Polymeric carbon nitride(PCN) has emerged as a promising candidate for photocatalytic hydrogen evolution, but its dependence on scarce and high-cost noble metal co-catalysts severely limits its extensive application. It will be of great promise to develop non-noble metal single-atom co-catalysts with low-cost and high atom utilization to improve the photocatalytic performance over PCN. Herein, single Ni atoms are successfully anchored onto carbon-vacant PCN nanosheets(CCN-SANi) via a two-step ammonia thermal treatment and photo-deposition process. Theoretical calculations and experimental results demonstrate that the optical absorption property and the charge transfer ability of CCN-SANi have been significantly improved with the introduction of single Ni atoms to form Ni−N3 sites. In comparison to carbon-vacant PCN(CCN) loaded with Ni clusters, the obtained CCN-SANi exhibits 11.4 times increased photocatalytic performance, with the highest hydrogen evolution rate reaching 511 µmol/(g·h), which is even 1.7 times higher than that of CCN loaded with Pt clusters. This research proposes an inspiring and reliable strategy to design novel single-atom semiconducting polymers with electronic structures manipulated for efficient photocatalysis.

Keywords

Photocatalytic hydgogen evolution / Single metal atom / Polymeric carbon nitride

Cite this article

Download citation ▾
Zhi Lin, Zhengqi Zhang, Yiqing Wang, Zhiming Peng, Xinxin Wang, Ruizhe Wang, Yu-Cheng Huang, Fanqi Meng, Mingtao Li, Chung-Li Dong, Qinghua Zhang, Lin Gu, Shaohua Shen. Anchoring Single Nickel Atoms on Carbon-vacant Carbon Nitride Nanosheets for Efficient Photocatalytic Hydrogen Evolution. Chemical Research in Chinese Universities, 2022, 38(5): 1243-1250 DOI:10.1007/s40242-022-2194-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen X, Shen S, Guo L, Mao S S. Chem. Rev., 2010, 110(11): 6503.

[2]

Kuang P, Sayed M, Fan J, Cheng B, Yu J. Adv. Energy Mater., 2020, 10(14): 1903802.

[3]

Zhang X, Xue D, Jiang S, Xia H, Yang Y, Yan W, Hu J, Zhang J. InfoMat, 2022, 4(3): e12257.

[4]

Luo H, Zeng Z, Zeng G, Zhang C, Xiao R, Huang D, Lai C, Cheng M, Wang W, Xiong W, Yang Y, Qin L, Zhou C, Wang H, Zhou Y, Tian S. Chem. Eng. J., 2020, 383: 123196.

[5]

Zhao D, Wang Y, Dong C L, Huang Y C, Chen J, Xue F, Shen S, Guo L. Nat. Energy, 2021, 6(4): 388.

[6]

Gui C, Wang H, Shao B, Yang Y, Xu G. Chem. J. Chinese Universities, 2021, 42(3): 827.

[7]

Wang Y, Shen S. Acta Phys.-Chim. Sin., 2020, 36(3): 1905080.

[8]

Lin Z, Wang S, Miao Y, Yuan J, Liu Y, Xu S, Cao S. Int. J. Hydrogen Energy, 2020, 45(11): 6341.

[9]

Zhao W, Hao N, Zhang G, Ma A, Chen W, Zhou H, Yang D, Xu B, Kong J. Chem. Res. Chinese Universities, 2020, 36(6): 1265.

[10]

Wang Y, Zhao D, Deng H, Li M, Chen J, Shen S. Solar RRL, 2021, 5(6): 2000630.

[11]

Zhao D, Wang M, Kong T, Shang Y, Du X, Guo L, Shen S. Mater. Today Chem., 2019, 11: 296.

[12]

Wang J, Yi Y, Li M, Chang Y, Zha F. Chem. Res. Chinese Universities, 2019, 35(2): 319.

[13]

Li D, Li B, Li C, Yu X, Shan Y, Chen K. Chem. J. Chinese Universities, 2021, 42(4): 1292.

[14]

Ding Y, Lin Z, Deng J, Liu Y, Zhang L, Wang K, Xu S, Cao S. Int. J. Hydrogen Energy, 2021, 47(3): 1568.

[15]

Wang S, Zhao H, Zhao X, Zhang J, Ao Z, Dong P, He F, Wu H, Xu X, Shi L, Zhao C, Wang S, Sun H. Chem. Eng. J., 2020, 381: 122593.

[16]

Jiang Z, Zhang X, Chen H S, Hu X, Yang P. ChemCatChem, 2019, 11(18): 4558.

[17]

Zhao R, Liang Z, Gao S, Yang C, Zhu B, Zhao J, Qu C, Zou R, Xu Q. Angew. Chem. Int. Ed., 2019, 58(7): 1975.

[18]

Meng J, Li J, Liu J, Zhang X, Jiang G, Ma L, Hu Z-Y, Xi S, Zhao Y, Yan M, Wang P, Liu X, Li Q, Liu J Z, Wu T, Mai L. ACS Central Science, 2020, 6(8): 1431.

[19]

Zhang Z, Lu L, Lv Z, Chen Y, Jin H, Hou S, Qiu L, Duan L, Liu J, Dai K. Appl. Catal. B: Environ., 2018, 232: 384.

[20]

Xue F, Si Y, Wang M, Liu M, Guo L. Nano Energy, 2019, 62: 823.

[21]

Han X, Si T, Liu Q, Zhu F, Li R, Chen X, Liu J, Sun H, Zhao J, Ling H, Zhang Q, Wang H. Chem. Eng. J., 2021, 426: 130824.

[22]

Yu Q, Lin X, Li X, Chen J. Chem. Res. Chinese Universities, 2020, 36(6): 1013.

[23]

Sun K, Shen J, Liu Q, Tang H, Zhang M, Zulfiqar S, Lei C. Chinese. J. Catal., 2020, 41(1): 72.

[24]

Xu Q, Cheng B, Yu J, Liu G. Carbon, 2017, 118: 241.

[25]

Cheng C, Zong S, Shi J, Xue F, Zhang Y, Guan X, Zheng B, Deng J, Guo L. Appl. Catal. B: Environ., 2020, 265: 118620.

[26]

Chen S, Liao J, Zhou Z, Yang S, Gao Q, Cai X, Peng F, Fang Y, Zhang S. Appl. Catal. B: Environ., 2021, 291: 12013.

[27]

Xu S, Yin H, Xue D, Xia H, Zhao S, Yan W, Mu S, Zhang J. Chem. J. Chinese Universities, 2022, 43(5): 20220028.

[28]

Gawande M B, Fornasiero P, Zbořil R. ACS Catal., 2020, 10(3): 2231.

[29]

Lu B, Liu Q, Chen S. ACS Catal., 2020, 10(14): 7584.

[30]

Wang G, Zhang T, Yu W, Si R, Liu Y, Zhao Z. ACS Catal., 2020, 10(10): 5715.

[31]

Li X, Bi W, Zhang L, Tao S, Chu W, Zhang Q, Luo Y, Wu C, Xie Y. Adv. Mater., 201, 28(12): 2427.

[32]

Shen S, Chen J, Wang Y, Dong C-L, Meng F, Zhang Q, Huangfu Y, Lin Z, Huang Y-C, Li Y, Li M, Gu L. Sci. Bull., 2022, 67(5): 520.

[33]

Zhang W, Peng Q, Shi L, Yao Q, Wang X, Yu A, Chen Z, Fu Y. Small, 2019, 15(50): 1905166.

[34]

Jin X, Wang R, Zhang L, Si R, Shen M, Wang M, Tian J, Shi J. Angew. Chem. Int. Ed., 2020, 59(17): 6827.

[35]

Cao Y, Chen S, Luo Q, Yan H, Lin Y, Liu W, Cao L, Lu J, Yang J, Yao T, Wei S. Angew. Chem. Int. Ed., 2017, 56(40): 12191.

[36]

Zhou P, Lv F, Li N, Zhang Y, Mu Z, Tang Y, Lai J, Chao Y, Luo M, Lin F, Zhou J, Su D, Guo S. Nano Energy, 2019, 56: 127.

[37]

Cheng L, Zhang P, Wen Q Y, Fan J J, Xiang Q J. Chinese J. Catal., 2022, 43(2): 451.

[38]

Liu G, Huang Y, Lv H, Wang H, Zeng Y, Yuan M, Meng Q, Wang C. Appl. Catal. B: Environ., 2021, 284: 119683.

[39]

Li L, Yu Y, Lin S, Chu W, Sun D, Su Q, Ma S, Du G, Xu B. Catal. Commun., 2021, 153: 106294.

[40]

Dong J, Wang M, Li X, Chen L, He Y, Sun L. ChemSusChem, 2012, 5(11): 2133.

[41]

Lin Z, Wang K, Wang X, Wang S, Pan H, Liu Y, Xu S, Cao S. ACS Appl. Nano Mater., 2020, 3(7): 7016.

[42]

Lin Z, Wang Y, Peng Z, Huang Y-C, Meng F, Chen J-L, Dong C-L, Zhang Q, Wang R, Zhao D, Chen J, Gu L, Shen S. Adv. Energy Mater., 2022, 12(26): 2200716.

[43]

Li Y, Wang Y, Dong C L, Huang Y C, Chen J, Zhang Z, Meng F, Zhang Q, Huangfu Y, Zhao D, Gu L, Shen S. Chem. Sci., 2021, 12(10): 3633.

[44]

Sun T, Zhao S, Chen W, Zhai D, Dong J, Wang Y, Zhang S, Han A, Gu L, Yu R, Wen X, Ren H, Xu L, Chen C, Peng Q, Wang D, Li Y. P. Nat. Acad. Sci. USA, 2018, 115(50): 12692.

[45]

Zhang T, Zhang D, Han X, Dong T, Guo X, Song C, Si R, Liu W, Liu Y, Zhao Z. J. Am. Chem. Soc., 2018, 140(49): 16936.

[46]

Li Y, Li B, Zhang D, Cheng L, Xiang Q. ACS Nano, 2020, 14(8): 10552.

[47]

Wu C, Zhang X, Xia Z, Shu M, Li H, Xu X, Si R, Rykov A I, Wang J, Yu S, Wang S, Sun G. J. Mater. Chem. A, 2019, 7(23): 14001.

[48]

Xu Y, Fan M, Yang W, Xiao Y, Zeng L, Wu X, Xu Q, Su C, He Q. Adv. Mater., 2021, 33(39): 2101455.

[49]

Han Q, Cheng Z, Wang B, Zhang H, Qu L. ACS Nano, 2018, 12(6): 5221.

[50]

Li Y, Zhang D, Fan J, Xiang Q. Chinese J. Catal., 2021, 42(4): 627.

[51]

Fu Y, Cao F, Wu F, Diao Z, Chen J, Shen S, Li L. Adv. Funct. Mater., 2018, 28(16): 1706785.

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/