Anode Catalytic Dependency Behavior on Ionomer Content in Direct CO Polymer Electrolyte Membrane Fuel Cell

Yang Li , Xian Wang , Jie Liu , Zhao Jin , Changpeng Liu , Junjie Ge , Wei Xing

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5) : 1251 -1257.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5) : 1251 -1257. DOI: 10.1007/s40242-022-2193-8
Article

Anode Catalytic Dependency Behavior on Ionomer Content in Direct CO Polymer Electrolyte Membrane Fuel Cell

Author information +
History +
PDF

Abstract

In this work, the effect of Nafion ionomer content on the structure and catalytic performance of direct CO polymer electrolyte membrane fuel cell(CO-PEMFC) by using Rh-N-C single-atom catalyst as the anode catalyst layers was studied. The ionic plaque and roughness of the anode catalyst layers increase with the increase of Nafion ionomer content. Furthermore, the contact angle measurement results show that the hydrophilicity of the anode catalyst layers also increases with the increase of Nafion ionomer content. However, when the Nafion ionomer content is too low, the binding between microporous layers, catalyst layers and membrane cannot meet the requirement for either electric conductivity or mass transfer. While Nafion ionomer content increased above 30%, the content of water in anode is difficult to control. Therefore, it was found that AN 30(30% Nafion ionomer content of anode) is the best level to effectively extend the three-phase boundary and improve CO-PEMFCs performance.

Keywords

Anode catalyst / Carbon monoxide / Polymer electrolyte membrane fuel cell(PEMFC) / Nafion ionomer content

Cite this article

Download citation ▾
Yang Li, Xian Wang, Jie Liu, Zhao Jin, Changpeng Liu, Junjie Ge, Wei Xing. Anode Catalytic Dependency Behavior on Ionomer Content in Direct CO Polymer Electrolyte Membrane Fuel Cell. Chemical Research in Chinese Universities, 2022, 38(5): 1251-1257 DOI:10.1007/s40242-022-2193-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cao K Y, Li H B, Li T Y, Liang M H, Liu B J, Liu Z C, Peng J W, Wang P. Chem J. Chinese Universities, 2020, 41(12): 2845.

[2]

Chen C L, Li Y J, Mi W L. Chem. J. Chinese Universities, 2021, 43(2): 1.

[3]

Kang Y Q, Wang J Q, Wei Y P, Wu Y L, Xia D S, Gan L. Nano Research, 2022, 15(7): 6148.

[4]

Luo Y, Wu Y H, Li B, Qu J K, Feng S P, Chu P K. International Journal of Energy Research, 2021, 45(13): 18392.

[5]

Rudolf T, Schurmann T, Schwab S, Hohmann S. Proceedings of the IEEE, 2021, 109(6): 1094.

[6]

Alyakhni A, Boulon L, Vinassa J M, Briat O. IEEE Access, 2021, 9: 143922.

[7]

Fathabadi H. Energy, 2018, 143: 467.

[8]

Abdollahzadeh M, Ribeirinha P, Boaventura M, Mendes A. Energy, 2018, 152: 939.

[9]

Huang C Y, Chen Y Y, Su C C, Hsu C F. J. Power Sources, 2007, 174(1): 294.

[10]

Li Y, Wang X, Mei B B, Wang Y, Luo Z Y, Luo E G, Yang X L, Shi Z P, Liang L, Jin Z, Wu Z J, Jiang Z, Liu C P, Xing W, Ge J J. Science Bulletin, 2021, 66(13): 1305.

[11]

Moreno N G, Molina M C, Gervasio D, Robles J F P. Renewable & Sustainable Energy Reviews, 2015, 52: 897.

[12]

Liu Q S, Lan F C, Chen J Q, Zeng C J, Wang J F. J. Power Sources, 2022, 517: 23.

[13]

Lim B H, Majlan E H, Tajuddin A, Husaini T, Daud W R W, Radzuan N A M, Haque M A. Chin. J. Chem. Eng., 2021, 33: 1.

[14]

Luo B, Pan M, Zhou F. Chem. J. Chinese Universities, 2022, 43(4): 20210853.

[15]

Wang K, Li N, Yang Y N, Ke S J, Zhang Z P, Dou M L, Wang F. Chin. Chem. Lett., 2021, 32(10): 3159.

[16]

Moghaddam R B, Easton E B. Electrochim Acta, 2018, 292: 292.

[17]

Xi J Y, Meng K, Li Y, Wang M, Liao Q, Wei Z D, Shao M H, Wang J C. Chin. J. Chem. Eng., 2022, 41: 473.

[18]

Han D B, Tsipoaka M, Shanmugam S. J. Power Sources, 2021, 496: 9.

[19]

Kim K H, Lee K Y, Kim H J, Cho E, Lee S Y, Lim T H, Yoon S P, Hwang I C, Jang J H. Int. J. Hydrogen Energy, 2010, 35(5): 2119.

[20]

Prasanna M, Cho E A, Lim T H, Oh I H. Electrochim Acta, 2008, 53(16): 5434.

[21]

Daniel L, Bonakdarpour A, Sharman J, Wilkinson D P. Fuel Cells, 2020, 20(2): 224.

[22]

Liu X Y, Zhou Z F, Bai M L, Poramapojana P, Li Y, Gao L S, Li Y L, Li Y B. International Journal of Energy Research, 2002, 46(9): 11778.

[23]

Poltarzewski Z, Staiti P, Alderucci V, Wieczorek W, Giordano N. J. Electrochem. Soc., 1992, 139(3): 761.

[24]

Staiti P, Poltarzewski Z, Alderucci V, Maggio G, Giordano N. Int. J. Hydrogen Energy, 1994, 19(6): 523.

[25]

Long Z, Deng G R, Liu C P, Ge J J, Xing W, Ma S H. Chinese Journal of Catalysis, 201, 37(7): 988.

[26]

Yang D J, Tan Y L, Li B, Ming P W, Xiao Q F, Zhang C M. Membranes, 2022, 12(3): 24.

[27]

Gurau V, Mann J A. Siam Journal on Applied Mathematics, 2009, 70(2): 410.

[28]

Li T, Shen J B, Chen G Y, Guo S Y, Xie G Y. Acs Omega, 2020, 5(28): 17628.

[29]

Zheng J S, Dai N N, Zhu S Y, Gao Y, Ye L C, Ma J X, Zheng J P. J. Alloys Compd., 2018, 769: 471.

[30]

Shahgaldi S, Alaefour I, Li X G. Applied Energy, 2018, 225: 1022.

[31]

Parniere A, Blanchard P Y, Cavaliere S, Donzel N, Prelot B, Roziere J, Jones D J. J. Electrochem. Soc., 2022, 169(4): 11.

[32]

Adilbish G, Yu Y T. Int. J. Hydrogen Energy, 2017, 42(2): 1181.

[33]

Jung U H, Jeong S U, Park K T, Lee H M, Chun K, Choi D W, Kim S H. Int. J. Hydrogen Energy, 2007, 32(17): 4459.

[34]

Roh C W, Choi J, Lee H. Electrochem. Commun., 2018, 97: 105.

[35]

Natarajan S K, Hamelin J. J. Power Sources, 2010, 195(22): 7574.

[36]

Gharibi H, Faraji M, Kheirmand M. Electroanalysis, 2012, 24(12): 2354.

[37]

Li G C, Pickup P G. J. Electrochem. Soc., 2003, 150(11): C745.

[38]

Zheng C Y, Geng F, Rao Z H. Computational Materials Science, 2017, 132: 55.

[39]

Bultel Y, Wiezell K, Jaouen F, Ozil P, Lindbergh G. Electrochim. Acta, 2005, 51(3): 474.

[40]

Wu R, Liao Q, Zhu X, Wang H. Int. J. Hydrogen Energy, 2012, 37(15): 11255.

[41]

Choi J, Yeon J H, Yook S H, Shin S, Kim J Y, Choi M, Jang S. ACS Applied Materials & Interfaces, 2021, 13(1): 806.

[42]

Yamazaki S, Ioroi T, Yamada Y, Yasuda K, Kobayashi T. Angewandte Chemie-International Edition, 200, 45(19): 3120.

[43]

Wang X, Li Y, Wang Y, Zhang H, Jin Z, Yang X L, Shi Z P, Liang L, Wu Z J, Jiang Z, Zhang W, Liu C P, Xing W, Ge J J. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(43): 7.

[44]

Yang X L, Wang Y, Wang X, Mei B B, Luo E G, Li Y, Meng Q L, Jin Z, Jiang Z, Liu C P, Ge J J, Xing W. Angewandte Chemie-International Edition, 2021, 60(50): 26177.

[45]

Madadi F, Rezaeian A, Edris H, Zhiani M. Surf. Coat. Technol., 2020, 389: 125676.

[46]

Deschamps F L, Mahy J G, Leonard A F, Lambert S D, Dewandre A, Scheid B, Job N. Thin Solid Films, 2020, 695: 14.

[47]

Mathias M F, Makharia R, Gasteiger H A, Conley J J, Fuller T, Gittleman C, Kocha S S. Electrochemical Society Interface, 2005, 14(3): 24.

[48]

Wood D L, Rulison C, Borup R L. J. Electrochem. Soc., 2010, 157(2): B195.

[49]

Planes E, de Moor G, Bas C, Flandin L. Fuel Cells, 2018, 18(2): 148.

[50]

Beniya A, Higashi S. Nature Catalysis, 2019, 2(7): 590.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/