Theoretical Investigation of the Mechanism of Rh(III)-catalyzed Annulation of 2-Biphenylboronic Acid with Activated Alkene

Nan Lu , Chengxia Miao , Xiaozheng Lan

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (2) : 276 -282.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (2) : 276 -282. DOI: 10.1007/s40242-022-2187-6
Article

Theoretical Investigation of the Mechanism of Rh(III)-catalyzed Annulation of 2-Biphenylboronic Acid with Activated Alkene

Author information +
History +
PDF

Abstract

The mechanism is investigated for Cp tBuRh(OH)2-catalyzed annulation of 2-biphenylboronic acid with three activated alkenes using M06-2X functional. The reaction comprises transmetalation via two steps and following C-H activation producing reactive Rh-biphenyl complex with two Rh—C σ bonds. After the coordination/insertion of alkenes, respective fused or bridged cyclic products are yielded depending on different alkenes accompanied by the release of Cp tBuRh. The promotion of Cp tBuRh(OH)2 lies in the barrier decrease of transmetalation and C-H activation ready for coordination/insertion ensuring the smooth progress of common rate-limiting reductive elimination. The stereoselective transfer and ring rotation are specific for benzoquinone and cyclopropenone. The role of Rh(III) catalyst and release of Rh(I) is supported by Multiwfn analysis on frontier molecular orbital(FMO) of specific transiton states(TSs) and Mayer bond order(MBO) value of vital bonding, breaking.

Keywords

Annulation / Activated alkene / Transmetalation / Coordination/insertion / M06-2X functional

Cite this article

Download citation ▾
Nan Lu, Chengxia Miao, Xiaozheng Lan. Theoretical Investigation of the Mechanism of Rh(III)-catalyzed Annulation of 2-Biphenylboronic Acid with Activated Alkene. Chemical Research in Chinese Universities, 2023, 39(2): 276-282 DOI:10.1007/s40242-022-2187-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rej S, Ano Y, Chatani N. Chem. Rev., 2020, 120: 1788.

[2]

Chan N H, Gair J J, Roy M, Qiu Y, Wang D-S, Durak L J, Chen L, Filatov A S, Lewis J C. Organometallics, 2021, 40: 6.

[3]

Xing Y-Y, Liu J-B, Sun Q-M, Sun C-Z, Huang F, Chen D-Z. J. Org. Chem., 2019, 84: 10690.

[4]

Chu J-H, Su Z-H, Yen K-W, Chien H-I. Organometallics, 2020, 39: 3168.

[5]

Rani G, Luxami V, Paul K. Chem. Commun., 2020, 56: 12479.

[6]

Mas-Rosello J, Herraiz A G, Audic B, Laverny A, Cramer N. Angew. Chem., Int. Ed., 2021, 60: 13198.

[7]

St John-Campbell S, Ou A K, Bull J A. Chem. — Eur. J., 2018, 24: 17838.

[8]

Kapoor M, Singh A, Sharma K, Hsu H M. Adv. Synth. Catal., 2020, 362: 4513.

[9]

Dutta U, Maiti S, Bhattacharya T, Maiti D. Science, 2021, 372: eabd5992.

[10]

Wu M-J, Chu J-H. J. Chin. Chem. Soc., 2020, 67: 399.

[11]

Zhang S-S, Hu T-J, Li M-Y, Song Y-K, Yang X-D, Feng C, Lin G-Q. Angew. Chem., Int. Ed., 2019, 58: 3387.

[12]

Groves A, Sun J, Parke H R I, Callingham M, Argent S P, Taylor L J, Lam H W. Chem. Sci., 2020, 11: 2759.

[13]

Moon S, Kato M, Nishii Y, Miura M. Adv. Synth. Catal., 2020, 362: 1669.

[14]

Partyka D V. Chem. Rev., 2011, 111: 1529.

[15]

Nagata T, Satoh T, Nishii Y, Miura M. Synlett, 201, 27: 1707.

[16]

Xu S, Huang B, Qiao G, Huang Z, Zhang Z, Li Z, Wang P, Zhang Z. Org. Lett., 2018, 20: 5578.

[17]

Kong W-J, Finger L H, Oliveira J C A, Ackermann L. Angew. Chem., Int. Ed., 2019, 58: 6342.

[18]

Chaudhary B, Kulkarni N, Saiyed N, Chaurasia M, Desai S, Potkule S, Sharma S. Adv. Synth. Catal., 2020, 362: 4794.

[19]

Chaudhary B, Auti P, Shinde S D, Yakkala P A, Giri D, Sharma S. Org. Lett., 2019, 21: 2763.

[20]

Wen Z-K, Zhao Z-K, Wang N-J, Chen Z-L, Chao J-B, Feng L-H. Org. Lett., 2019, 21: 9545.

[21]

Li H, Wang M-L, Liu Y-W, Li L-J, Xu H, Dai H-X. ACS Catal., 2022, 12: 82.

[22]

Liu B, Yang L, Dong Z, Chang J, Li X. Org. Lett., 2021, 23: 7199.

[23]

Wang X-Y, Ke C-Q, Tang C-P, Yuan D, Ye Y. J. Nat. Prod., 2009, 72: 1209.

[24]

Houk K N, Cheong P H Y. Nature, 2008, 455: 309.

[25]

Lu N, Meng L, Chen D Z, Zhang G Q. J. Phys. Chem. A, 2012, 116: 670.

[26]

Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A Gaussian 09 (Revision B.01), 2009, Wallingford CT: Gaussian, Inc.

[27]

Becke A D. J. Chem. Phys., 199, 104: 1040.

[28]

Lee C T, Yang W T, Parr R G. Phys. Rev. B, 1988, 37: 785.

[29]

Hay P J, Wadt W R. J. Chem. Phys., 1985, 82: 270.

[30]

Tapia O. J. Math. Chem., 1992, 10: 139.

[31]

Tomasi J, Persico M. Chem. Rev., 1994, 94: 2027.

[32]

Simkin B Y, Sheikhet I. Quantum Chemical and Statistical Theory of Solutions—A Computational Approach, 1995, London: Ellis Horwood

[33]

Tomasi J, Mennucci B, Cammi R. Chem. Rev., 2005, 105: 2999.

[34]

Marenich A V, Cramer C J, Truhlar D G. J. Phys. Chem. B, 2009, 113: 6378.

[35]

Reed A E, Weinstock R B, Weinhold F. J. Chem. Phys., 1985, 83: 735.

[36]

Reed A E, Curtiss L A, Weinhold F. Chem. Rev., 1988, 88: 899.

[37]

Foresman J B, Frisch A. Exploring Chemistry with Electronic Structure Methods, 1996 2nd ed. Pittsburgh: Gaussian, Inc.

[38]

Lu T, Chen F. J. Comput. Chem., 2012, 33: 580.

[39]

Lu N, Wang H T. Dalton Trans., 2013, 42: 13931.

[40]

Lu N, Bu Y X, Wang H T. Phys. Chem. Chem. Phys., 201, 18: 2913.

[41]

Lu N, Lan X, Miao C, Qian P. Int. J. Quantum Chem., 2020, 120: e26340.

[42]

Lu N, Liang H, Qian P, Lan X, Miao C. Int. J. Quantum Chem., 2020, 120: e26574.

[43]

Frenking G, Fröhlich N. Chem. Rev., 2000, 100: 717.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/