Chemically Amplified Resist Based on Dendritic Molecular Glass for Electron Beam Lithography

Shengwen Hu , Jinping Chen , Tianjun Yu , Yi Zeng , Guoqiang Yang , Yi Li

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (1) : 139 -143.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (1) : 139 -143. DOI: 10.1007/s40242-022-2163-1
Article

Chemically Amplified Resist Based on Dendritic Molecular Glass for Electron Beam Lithography

Author information +
History +
PDF

Abstract

A novel dendritic molecular glass(MG) containing adamantane core(AD-15) was synthesized and characterized. It exhibits good solubility in common organic solvents and a stable amorphous state at room temperature, which contributes to forming films with different thicknesses by spin-coating. The thermal analysis of AD-15 indicates that no apparent glass transition temperature(T g) is observed before the thermal decomposition temperature(T d=160 °C). The good thermal resistance suggests that it can satisfy the lithographic process and is a candidate for photoresist materials. The patterning properties of AD-15 resist were evaluated by electron beam lithography(EBL). By optimizing the lithographic process parameters, AD-15 resist can achieve 40 nm half-pitch patterns with a line-edge roughness of 4.0 nm. The contrast and sensitivity of AD-15 resist were 1.9 and 67 µC/cm2, respectively. Compared with the commercial PMMA(950k) electron beam resist, the sensitivity of AD-15 resist increases by 6 times. This study provides a new example of molecular glass resist with high resolution and sensitivity for EBL.

Keywords

Dendritic molecule / Molecular glass / Chemically amplified resist / Electron beam lithography

Cite this article

Download citation ▾
Shengwen Hu, Jinping Chen, Tianjun Yu, Yi Zeng, Guoqiang Yang, Yi Li. Chemically Amplified Resist Based on Dendritic Molecular Glass for Electron Beam Lithography. Chemical Research in Chinese Universities, 2023, 39(1): 139-143 DOI:10.1007/s40242-022-2163-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Manfrinato V R, Camino F E, Stein A, Zhang L H, Lu M, Stach E A, Black C T. Adv. Funct. Mater., 2019, 29(52): 1903429.

[2]

Qin N, Qian Z G, Zhou C Z, Xia X X, Tao T H. Nat. Commun., 2021, 12(1): 5133.

[3]

Hu W C, Sarveswaran K, Lieberman M, Bernstein G H. J. Vac. Sci. Technol. B, 2004, 22(4): 1711.

[4]

Rommel M, Nilsson B, Jedrasik P, Bonanni V, Dmitriev A, Weis J. Microelectron. Eng., 2013, 110: 123.

[5]

Gangnaik A S, Georgiev Y M, Collins G, Holmes J D. J. Vac. Sci. Technol. B, 201, 34(4): 0416033.

[6]

Granata C, Esposito E, Vettoliere A, Petti L, Russo M. Nanotechnology, 2008, 19(27): 275501.

[7]

Li L, Yang S M, Han F, Wang L M, Zhang X T, Jiang Z D, Pan A. Sensors, 2014, 14(4): 7332.

[8]

Bolten J, Manecke C, Wahlbrink T, Waldow M, Kukz H. Microelectron. Eng., 2014, 123: 1.

[9]

Guerfi Y, Carcenac F, Larrieu G. Microelectron. Eng., 2013, 110: 173.

[10]

Chen Y F. Microelectron. Eng., 2015, 135: 57.

[11]

Prasciolu M, Tamburini F, Anzolin G, Mari E, Melli M, Carpentiero A, Barbieri C, Romanato F. Microelectron. Eng., 2009, 86(4): 1103.

[12]

Welch M E, Ober C K. J. Polym. Sci., Part B: Polym. Phys., 2013, 51(20): 1457.

[13]

Strunk K-P, Bojanowski N M, Huck C, Bender M, Veith L, Tzschoppe M, Freudenberg J, Wacker I, Schroder R R, Pucci A, Melzer C, Bunz U H F. ACS Appl. Nano Mater., 2020, 3(8): 7365.

[14]

Matsumoto H, Okabe T, Taniguchi J. Microelectron. Eng., 2020, 226: 111278.

[15]

Wieland M, Derks H, Gupta H, van de Peut T, Postma F, van Veen A H, Zhang Y. Proc. SPIE, 2010, 7637: 76371Z.

[16]

de Boer G, Dansberg M, Jager R, Peijster J J M, Slot E, Steenbrink S W H K, Wieland M. Proc. SPIE, 2013, 8680: 86800O.

[17]

Brandt P, Belledent J, Tranquillin C, Figueiro T, Meunier S, Bayle S, Fay A, Millequant M, Icard B, Wieland M. Proc. SPIE, 2014, 9049: 904915.

[18]

De Silva A, Felix N M, Ober C K. Adv. Mater., 2008, 20(17): 3355.

[19]

Yang D, Chang S W, Ober C K. J. Mater. Chem., 200, 16(18): 1693.

[20]

Peng X M, Wang Y F, Xu J, Yuan H, Wang L Q, Zhang T, Guo X D, Wang S Q, Li Y, Yang G Q. Macromol. Mater. Eng., 2018, 303(6): 1700654.

[21]

De Silva A, Lee J K, Andre X, Felix N M, Cao H B, Deng H, Ober C K. Chem. Mater., 2008, 20(4): 1606.

[22]

Wei Q, Wang L Y. Chem. Res. Chinese Universities, 2015, 31(4): 585.

[23]

Kasai T, Higashihara T, Ueda M. J. Polym. Sci., Part A: Polym. Chem., 2013, 51(9): 1956.

[24]

Kudo H, Watanabe D, Nishikubo T, Maruyama K, Shimizu D, Kai T, Shimokawa T, Ober C K. J. Mater. Chem., 2008, 18(30): 3588.

[25]

Yamamoto H, Tagawa S, Kozawa T, Kudo H, Okamoto K. J. Vac. Sci. Technol. B, 201, 34(4): 041606.

[26]

Tanaka M, Rastogi A, Kudo H, Watanabe D, Nishikubo T, Ober C K. J. Mater. Chem., 2009, 19(26): 4622.

[27]

Niina N, Kudo H, Oizumi H, Itani T, Nishikubo T. Thin Solid Films, 2013, 534: 459.

[28]

Yamamoto H, Kudo H, Kozawa T. Microelectron. Eng., 2015, 133: 16.

[29]

Liu J, Liu Z P, Wang L Y, Sun H. Chin. Sci. Bull., 2014, 59(11): 1097.

[30]

Nishikubo T, Kousuke A, Tsutsui K, Kishimoto S. J. Polym. Sci., Part A: Polym. Chem., 2001, 39: 1481.

[31]

Shi X, Prewett P, Huq E, Bagnall D M, Robinson A P G, Boden S A. Microelectron. Eng., 201, 155: 74.

[32]

Frommhold A, Yang D X, McClelland A, Xue X, Ekinci Y, Palmer R E, Robinson A P G. Proc. SPIE, 2014, 9051: 905119.

[33]

Chen J P, Hao Q S, Wang S Q, Li S Y, Yu T J, Zeng Y, Zhao J, Yang S M, Wu Y Q, Xue C F, Yang G Q, Li Y. ACS Appl. Polym. Mater., 2019, 1(3): 526.

[34]

Shirota Y. J. Mater. Chem., 2000, 10(1): 1.

[35]

Liao Y Y, Liu J H. J. Appl. Polym. Sci., 2008, 109(6): 3849.

[36]

Kozawa T. Jpn. J. Appl. Phys., 2015, 54: 016502.

[37]

Kozawa T. Jpn. J. Appl. Phys., 2012, 51: 06FC01.

[38]

Saeki A., Kozawa T., Tagawa S., Cao H., Deng H., Leeson M., J. Micro/Nanolith. MEMS MOEMS, 2007, (4), 043004

[39]

Jouve A, Simon J, Foucher J, David T, Jouve A, Simon J, Foucher J, David T. Proc. SPIE, 2005, 5753: 720.

[40]

Thackeray J. J. Micro/Nanolith. MEMS MOEMS., 2011, 10(3): 033009.

[41]

Maeda N, Konda A, Okamoto K, Kozawa T, Tamura T. Jpn. J. Appl. Phys., 2020, 59(8): 086501.

[42]

Chini S F, Amirfazli A. Langmuir, 2010, 26(16): 13707.

[43]

Kozawa T, Santillan J, Itani T. Proc. SPIE, 2013, 8679: 867913.

AI Summary AI Mindmap
PDF

345

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/