Fe2O3-MWNTs Composite with Reinforced Concrete Structure as High-performance Anode Material for Lithium-ion Batteries

Suhang Wang , Jinxin Zuo , Yongliang Li , Yiming Zhong , Xiangzhong Ren , Peixin Zhang , Lingna Sun

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (2) : 240 -245.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (2) : 240 -245. DOI: 10.1007/s40242-022-2147-1
Article

Fe2O3-MWNTs Composite with Reinforced Concrete Structure as High-performance Anode Material for Lithium-ion Batteries

Author information +
History +
PDF

Abstract

AFe2O3-MWNTs(multi-walled carbon nanotubes) composite with a reinforced concrete structure was fabricated employing a two-step method which involves a sol-gel process followed by high-temperature in situ sintering. This Fe2O3-MWNTs composite, intended to be used as an anode material for lithium-ion batteries, maintained a reversible capacity as high as 896.3 mA·h/g after 100 cycles at a current density of 100 mA/g and the initial coulombic efficiency reached 75.5%. The rate capabilities of the Fe2O3-MWNTs composite, evaluated using the ratios of capacity at 100, 200, 500, 1000, 2000 and 100 mA/g after every 10 cycles, were determined to be 904.7, 852.1, 759.0, 653.8, 566.8 and 866.3 mA·h/g, respectively. Such a superior electrochemical performance of the Fe2O3-MWNTs composite is mainly attributed to the reinforced concrete construction, in which the MWNTs function as the skeleton and conductive network. Such a structure contributes to shortening the transport pathways for both Li+ and electrons, enhancing conductivity and accommodating volume expansion during prolonged cycling. This Fe2O3-MWNTs composite with the designed structure is a promising anode material for high-performance lithium-ion batteries.

Keywords

Lithium-ion battery / Anode material / Fe2O3-multi-walled carbon nanotubes(MWNTs) composite / Sol-gel / Reinforced concrete structure

Cite this article

Download citation ▾
Suhang Wang, Jinxin Zuo, Yongliang Li, Yiming Zhong, Xiangzhong Ren, Peixin Zhang, Lingna Sun. Fe2O3-MWNTs Composite with Reinforced Concrete Structure as High-performance Anode Material for Lithium-ion Batteries. Chemical Research in Chinese Universities, 2023, 39(2): 240-245 DOI:10.1007/s40242-022-2147-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang T, Ran F. Adv. Funct. Mater., 2021, 31: 2010041.

[2]

Zhu P, Gastol D, Marshall J, Sommerville R, Goodship V, Kendrick E. J. Power Sources, 2021, 485: 229321.

[3]

Zhang H, Yang Y, Ren D, Wang L, He X. Energy Stor. Mater., 2021, 36: 147.

[4]

Zheng M, Tang H, Li L, Hu Q, Zhang L, Xue H, Pang H. Adv. Sci., 2018, 5: 1700592.

[5]

Zhang D, Li G, Fan J, Li B, Li L. Chem. Res. Chinese Universities, 2017, 33(6): 924.

[6]

Wang S, Yuan Z, Wu W, Li Y, Mi H, Ren X, Zhang P, Sun L. J. Alloy. Compd., 2021, 862: 158012.

[7]

Keppeler M, Shen N, Nageswaran S, Srinivasan M. J. Mater. Chem. A, 201, 4: 8223.

[8]

Yao J, Yang Y, Li Y, Jiang J, Xiao S, Yang J. J. Alloy. Compd., 2021, 855: 157288.

[9]

Kraytsberg A, Ein-Eli Y. J. Solid State Electrochem., 2017, 21: 1907.

[10]

Cao K, Jiao L, Liu H, Liu Y, Wang Y, Guo Z, Yuan H. Adv. Energy Mater., 2015, 5: 1401421.

[11]

Yin L, Gao Y J, Jeon I, Yang H, Kim J, Jeong S Y, Cho C R. Chem. Eng. J., 2019, 356: 60.

[12]

Zheng Z, Zao Y, Zhang Q, Cheng Y, Chen H, Zhang K, Wang M, Peng D. Chem. Eng. J., 2018, 347: 563.

[13]

Jiang T, Bu F, Feng X, Shakir I, Hao G, Xu Y. ACS Nano, 2017, 11: 5140.

[14]

Wu M, Chen J, Wang C, Wang F, Yi B, Su W, Wei Z, Liu S. Electrochim. Acta, 2014, 132: 533.

[15]

Gao G, Zhang Q, Cheng X, Qiu P, Sun R, Yin T, Cui D. ACS Appl. Mater. Interfaces, 2015, 7: 340.

[16]

Liu Y, Xu J, Qin X, Xin H, Yuan X, Zhang J, Li D, Song C. J. Mater. Chem. A, 2015, 3: 9682.

[17]

Mills P, Sullivan J L. J. Phys. D: Appl. Phys., 1983, 16: 723.

[18]

Pradhan G K, Parida K M. ACS Appl. Mater. Interfaces, 2011, 3: 317.

[19]

Grosvenor A P, Kobe B A, Biesinger M C, McIntyre N S. Surf. Interface Anal., 2004, 36: 1564.

[20]

Xiao L, Schroeder M, Kluge S, Balducci A, Hagemann U, Schulz C, Wiggers H. J. Mater. Chem. A, 2015, 3: 11566.

[21]

Zhao Y M, Li Y, Ma R Z, Roe M J, McCartney D G, Zhu Y Q. Small, 200, 2: 422.

[22]

Wan L, Yan D, Xu X, Li J, Lu T, Gao Y, Yao Y, Pan L. J. Mater. Chem. A, 2018, 6: 24940.

[23]

Sun L, Deng Q, Li Y, Mi H, Wang S, Deng L, Ren X, Zhang P. Electrochim. Acta, 2017, 241: 252.

[24]

Li Z, Mao Y, Tian Q, Zhang W, Yang L. J. Alloy. Compd., 2019, 784: 125.

[25]

Bao S, Li J, Xiao Y, Li P, Liu L, Yue B, Li Y, Sun W, Zhang W, Zhang L, Lai X. Mater. Chem. Phys., 2019, 225: 379.

[26]

Sun L, Deng Q, Li Y, Deng L, Wang Y, Ren X, Zhang P. Electrochim. Acta, 201, 222: 1650.

[27]

Yu W, Hou P, Li F, Liu C. J. Mater. Chem., 2012, 22: 13756.

[28]

Wang Z, Luan D, Madhavi S, Hu Y, Lou X W D. Energy Environ. Sci., 2012, 5: 5252.

[29]

Yin Y, Zhang X, Jia Y, Cao Z, Yang S. RSC Adv., 2015, 5: 1447.

[30]

Lou X, Huang J, Li T, Hu H, Hu B, Zhang Y. J. Mater. Sci.: Mater. Electron., 2014, 25: 1193.

[31]

Lee K, Shin S, Degen T, Lee W, Yoon Y S. Nano Energy, 2017, 32: 397.

[32]

Li D, Zhou J, Chen X, Song H. ACS Appl. Mater. Interfaces, 201, 8: 30899.

[33]

Wu X, Guo Y, Wan L, Hu C. J. Phys. Chem. C, 2008, 112: 16824.

[34]

Zheng Z, Li P, Huang J, Liu H, Zao Y, Hu Z, Zhang L, Chen H, Wang M, Peng D, Zhang Q. J. Energy Chem., 2020, 41: 126.

[35]

Huang P, Tao W, Wu H, Li X, Yin T, Zhang Q, Qi W, Gao G, Cui D. J. Energy Chem., 2018, 27: 1453.

[36]

Hou T, Fan A, Sun X, Zhang X, Xu Z, Cai S, Zheng C. Chin. Chem. Lett., 2021, 32: 2459.

[37]

Wang J, Wang G, Wang H. Electrochim. Acta, 2015, 182: 192.

[38]

Huang X, Cai X, Xu D, Chen W, Wang S, Zhou W, Meng Y, Fang Y, Yu X. J. Mater. Chem. A, 2018, 6: 16890.

[39]

Long Z, Yuan L, Shi C, Wu C, Qiao H, Wang K. Adv. Compos. Hybrid Mater., 2022, 5: 370.

[40]

Wang J, Yang X, Wang Y, Jin S, Cai W, Liu B, Ma C, Liu X, Qiao W, Ling L. Chem. Eng. Sci., 2021, 231: 116271.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/