Optically Controlled Coercive Field of MAPbl3/P(VDF-TrFE) Ferroelectric Composite Films

Yangfan Su , Yiran Sun , Dikui Zhou , Xiaoming Tang , Gaorong Han , Zhaohui Ren

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (2) : 228 -233.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (2) : 228 -233. DOI: 10.1007/s40242-022-2140-8
Article

Optically Controlled Coercive Field of MAPbl3/P(VDF-TrFE) Ferroelectric Composite Films

Author information +
History +
PDF

Abstract

Ferroelectric polymers, such as poly(vinylidene fluoride-trifluoroethylene)[P(VDF-TrFE) or PVTF] have attracted growing interest in developing flexible devices because of their excellent ferroelectricity and piezoelectricity. High coercive field(E c) inherent to PVTF for switching its polarization, however, is not beneficial for practical memory or sensor device application. Different strategies, including irradiation and interface control, have been thus developed to reduce E c. Despite many efforts, a facile approach to tailoring intrinsic E c of PVTF has not been documented. In this work, an optically controlled E c was reported, which is achieved for the first time by introducing photosensitive MAPbI3 nanocrystals into PVTF matrix. When exposed to the irradiation of 532 nm laser light, a decreased E c of the composites can be achieved reversibly by increasing the light density. The decreased level of E c increases as the MAPbI3 content enhanced, and a 10.7% reduction of E c can be achieved in 15%(mass fraction) MAPbI3/PVTF samples. These results could be attributed to loading an internal stress on PVTF, which was generated by the photostriction of MAPbI3 nanocrystals. This explanation was further supported by in-situ XRD results under irradiation of 532 nm laser light. Our findings may offer the opportunity to optically modulate the ferroelectric properties of PVTF composites for optimized device performances.

Keywords

Poly(vinylidene fluoride-trifluoroethylene[P(VDF-TrFE)] / MAPbI3 / Photostriction / Optically controlled coercive field

Cite this article

Download citation ▾
Yangfan Su, Yiran Sun, Dikui Zhou, Xiaoming Tang, Gaorong Han, Zhaohui Ren. Optically Controlled Coercive Field of MAPbl3/P(VDF-TrFE) Ferroelectric Composite Films. Chemical Research in Chinese Universities, 2023, 39(2): 228-233 DOI:10.1007/s40242-022-2140-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang D, Ning W, Yang Y, Ye L, Jiang L L, Zhang D A, Wang X X, Yan X, Long Y Z. ACS Appl. Mater. Interfaces, 2021, 13(37): 44234.

[2]

Yongjae C, Hyunmin C, Sungjae H, Donghee K, Yeonjin Y, Cheolmin P, Ji H, Seongil I. Nano Energy, 2021, 81: 105686.

[3]

Li Y H, Zhao Z H, Liu L, Zhou L L, Liu D, Li S X, Chen S Y, Dai Y J, Wang J, Wang Z L. Adv. Energy Mater., 2021, 11(14): 2100050.

[4]

Sun Q Q, Xia W M, Liu Y, Ren P G, Tian X, Hu T L. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2020, 67(5): 975.

[5]

Yang J, Chen Q S, Xu F, Jiang H X, Liu W L, Zhang X Q, Jiang Z X, Zhu G D. Adv. Electron. Mater., 2020, 6(10): 2000578.

[6]

Ico G, Myung A, Kim B S, Myung N V, Nam J. Nanoscale, 2018, 10(6): 2894.

[7]

Lee H J, Kim J, Kwon O, Lee H J, Kwak J H, Kim J M, Lee S S, Kim Y, Kim D Y, Jo J Y. Appl. Phys. Lett., 2015, 107(26): 262902.

[8]

Kim J W, Lee T K, Jung J H, Shin S, Lee B W, Ko J H. J. Korean Phys. Soc., 201, 69(11): 1724.

[9]

Li X H, Huang B H, Hu W J, Zhang Z D. J. Mater. Sci. Technol., 2019, 35(10): 2194.

[10]

Choudhury S, Li Y L, Chen L Q, Jia Q X. Appl. Phys. Lett., 2008, 92(14): 142907.

[11]

Wen Z, Qiu X B, Li C, Zheng C Y, Ge X H, Li A D, Wu D. Appl. Phys. Lett., 2014, 104(4): 042907.

[12]

Giada G, Luca C, Attilio M, Massimiliano L, Sergio M, Francesca P, Luca B, Virgilio M, Gianni C. Adv. Healthc. Mater., 201, 5(14): 1808.

[13]

Tsutsumi N, Kosugi R, Kinashi K, Sakai W. ACS Appl. Mater. Interfaces, 201, 8(26): 16816.

[14]

Paik H, Choi Y Y, Hong S, No K. Sci. Rep., 2015, 5(1): 13209.

[15]

Ke X H, Yan J, Zhang A, Zhang B, Chen Y L. Appl. Phys. Lett., 2015, 107(9): 091904.

[16]

Zhou Y, You L, Wang S W, Ku Z L, Fan H J, Schmidt D, Rusydi A, Chang L, Wang L, Ren P, Chen L F, Yuan G L, Chen L, Wang J L. Nat. Commun., 201, 7(1): 11193.

[17]

Jin H, Song D, Han H, Kim S, Kim J, Kim D, Shin H, Ahn T, Wolf C, Lee T, Im S. Adv. Mater., 2015, 27(22): 3424.

[18]

Seo J, Son J, Kim W. Mater. Lett., 2019, 238: 294.

[19]

Liu Y C, Zhang Y X, Yang Z, Yang D, Ren X D, Pang L Q, Liu S Z. Adv. Mater., 201, 28(41): 9204.

[20]

Sheikh A D, Vhanalakar V, Katware A, Pawar K, Patil P S. Adv. Mater. Technol., 2019, 4(9): 1900251.

[21]

Saidaminov M I, Abdelhady A L, Murali B, Alarousu E, Burlakov V M, Peng W, Dursun I, Wang L, He Y, Maculan G, Goriely A, Wu T, Mohammed O F. Nat. Commun., 2015, 6(1): 7586.

[22]

Zhou Z, Zhang Z, Zhang Q L, Yang H, Zhu Y L, Wang Y Y, Chen L. ACS Appl. Mater. Interfaces, 2020, 12(1): 1567.

[23]

Park B, Philippe B, Gustafsson T, Sveinbjörnsson K, Hagfeldt A, Johansson E M J, Boschloo G. Chem. Mater., 2014, 26(15): 4466.

[24]

Oh S, Kim Y, Choi Y Y, Kim D, Choi H, No K. Adv. Mater., 2012, 24(42): 5708.

[25]

Habibur R M, Yaqoob U, Muhammad S, Uddin A S M I, Kim H C. Mater. Chem. Phys., 2018, 215: 46.

[26]

Gregorio R Jr., Cestari M. J. Polym. Sci. Part B: Polym. Phys., 1994, 32(5): 859.

[27]

Yang Y, Zou X P, Pei Y X, Bai X, Jin W B, Chen D. J. Mater. Sci. Mater. Electron., 2018, 29(1): 205.

[28]

Lv X J, Dong S, Huang X, Cao B, Zeng S X, Wang Y J, Wu T, Chen L, Wang J L, Yuan G L, Liu J M. Adv. Opt. Mater., 2021, 9(20): 2100837.

[29]

D’Innocenzo V, Srimath Kandada A R, De Bastiani M, Gandini M, Petrozza A. J. Am. Chem. Soc., 2014, 136(51): 17730.

[30]

Warren B E. X-Ray Diffraction, 1990, North Chelmsford: Courier Corporation

[31]

Lu H, Bark C W, Esque de los Ojos D, Alcala J, Eom C B, Catalan G, Gruverman A. Science, 2012, 336(6077): 59.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/